4x^2+5y^2+8x=37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)
\(A=4x^2+8x+y^2-4y+20\)
\(A=\left(4x^2+8x\right)+\left(y^2-4y\right)+20\)
\(A=4\left(x^2+2x+1\right)+\left(y^2-4y+4\right)-4-4+20\)
\(A=4\left(x+1\right)^2+\left(y-2\right)^2+12\ge12\forall x,y\)
Do \(4\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
Dấu "=" Xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy Min A=12 <=>\(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
5.
\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)
\(=4x^3y^2(x+y)^2\)
9.
\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)
13.
\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)
17.
\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)
\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)
21.
\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)
\(=(a^2+4-4ab)(a^2+4+4ab)\)
25.
\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)
\(=(10a-a^2-25)(10a+a^2+25)\)
\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)
29.
\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)
\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)
a,x2-8x+16=(x-4)2
b,(x-5y)(x+5y)=x2-25y2
c,4x4-16=4(x2-2)(x2+2)
d,x2+4xy+4y2=(x+2y)2
a) \(3^{x+2}\cdot5^{y-3}=45^x\)
\(\Rightarrow3^{x+2}\cdot5^{y-3}=\left(3^2\right)^x\cdot5^x\)
\(\Rightarrow3^{x+2}\cdot5^{y-3}=3^{2x}\cdot5^x\)
\(\Rightarrow\left\{{}\begin{matrix}3^{x+2}=3^{2x}\\5^{y-3}=5^x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=2x\\y-3=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y-3=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
b) Ta có : 4x - x2 + 1
= -(x2 - 4x - 1)
= -(x2 - 4x + 4 - 5)
= -(x2 - 4x + 4) + 5
= -(x - 2)2 + 5 \(\le5\forall x\) vì : \(-\left(x-2\right)^2\le0\forall x\)
Vậy GTLN của biểu thức là : 5 khi x = 2
Ta có : (x2 - 4xy + 4y2) + (10x - 20y) + (y2 - 2y + 1) + 27
= (x - 2y)2 + 10(x - 2y) + (y - 1)2
= (x - 2y)2 + 10(x - 2y) + 25 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2 \(\ge2\forall x\)
Vậy GTNN của biểu thức là 2
Khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Điều kiện về $x,y$ cũng như yêu cầu đề là gì bạn nên ghi chú rõ ra thì mọi người sẽ hỗ trợ bạn được tốt hơn nhé.