Chứng minh rằng với \(\forall n\in N\)thì:
\(9^{2n+1}+1⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chia làm 2 trường hợp
*Trường hơp 1: n chẵn
Nếu n chẵn => (n + 10)⋮2 => (n+10)(n+15)⋮2
*Trường hợp 2: n lẻ
Nếu n lẻ => (n + 15)⋮ 2 => (n+10)(n+15)⋮2
Vậy với mọi trường hợp n ∈ N thì (n+10)(n+15)⋮2
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
Ta có: \(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=3.9^n-2^n.3+2^n.7\)
\(=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có: \(\hept{\begin{cases}9^n-2^n⋮9-2=7\\2^n.7⋮7\end{cases}}\)
\(\Rightarrow3\left(9^n-2^n\right)+2^n.7⋮7\)
\(\Rightarrow\left(3^{2n+1}+2^{n+2}\right)⋮7\left(đpcm\right)\)
Lời giải:
$7.2^{2n-2}\equiv 2.2^{2n-2}\equiv 2^{2n-1}\pmod 5$
$\Rightarrow 7.2^{2n-2}+3^{2n-1}\equiv 2^{2n-1}+3^{2n-1}\pmod 5$
Mà $2^{2n-1}+3^{3n-1}\vdots (2+3=5)$ (do $2n-1$ lẻ)
$\Rightarrow 7.2^{2n-2}+3^{2n-1}\vdots 5$ (đpcm)
\(2^{2n+1}=2\left(4^n\right)=2\left(3+1\right)^n=2\left(BS3+1\right)=BS3+2=3k+2\)
=>\(2^{2^{2n+1}}+3=2^{3k+2}+3=4\left(8\right)^k+3=4\left(7+1\right)^k+3=4\left(BS7+1\right)+3=BS7+7\)
chia hết cho 7
=> \(A\notin P\)
Đề sai nhé, phải là :
\(3^{2n+1}+2^{n+2}⋮7\)
Ta có : \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)
Do đó : \(9^n.3+2^n.4⋮7\)
hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )
Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)
Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)
Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5
Vậy .......
ok , tiện thì kb :v
9^2n+1 + 1 chia hết 10
9^2n x 9 + 1 chia hết 10