Chứng minh rằng \(\forall n\in N\)thì:
\(2^{4n+2}+1⋮5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2^{4n+2}=4^{2n+1}=\left(5-1\right)^{2n+1}\overline{=}-1\left(mod5\right)\)
\(\Rightarrow2^{4n+2}+1\overline{=}\left(-1\right)+1=0\left(mod5\right)\)
Hay \(2^{4n+2}+1⋮5\) (đpcm)
34n + 1 + 2 = 34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 = (...1).3 + 2 = (...3) +2 = (....5)
Vì 34n + 1 + 2 có chữ số tận cùng là 5 nên 34n +1 + 2 \(⋮\)5
Ta có: \(3^{4n+1}+2=3^{4n}.3+2\)mà \(3^{4n}\) có chữ số tận cùng là 1
=> \(3^{4n}.3+2=\left(...1\right).3+2\)
\(=\left(...5\right)⋮5\forall n\in N\)
Ta có : 3^4n+1 + 2 => (....3) + 2
=> (.....5) chia hết cho 5
mình nhá ^^
Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)
Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5
Vậy .......
ok , tiện thì kb :v
Ta có : 24n = (24)n = 16n = \(\overline{...6}\)
=> 24n+1 = 16n.2 = \(\overline{...2}\)
=> 24n+1 + 3 = \(\overline{...5}⋮5\)
=> đpcm
@Nguyệt Hàn Tuyết
1)
a) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\forall n\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
mà n∈N
nên \(n\in\left\{0;2;6\right\}\)
Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)
b) Ta có: \(n^2+2n+7⋮n+2\)
\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
hay \(7⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(7\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)
mà n∈N
nên n=5
Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)
2)
a) Ta có: \(2^{4n+2}+1\)
\(=2^{2\left(2n+1\right)}+1\)
\(=4^{2n+1}+1\)
Vì \(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)
nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N
hay \(2^{4n+2}+1⋮5\forall n\in N\)
n+5 chia hết n+1
=> (n+1)+4 chia hết n+1
Mà n+1 chia hết n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)={1;2;4;-1;-2;-4}
=> n thuộc { 0;1;3;-2;-3;-5}
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
Ta có:24n+2+1
=(24)n x 4+1
=16n x 4+1
=(.....6)x 4+1
=(......4)+1=(.....5)
Vì 24n+2có chữ số tận cùng là 5 nên 24n+2chia hết cho 5 với mọi n