K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

Bình phương 2 vế ta có:

\(a^2-a+1+a-a^2+1+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=>  \(2+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=> \(\sqrt{\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)}\le1\) <=> \(\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)\le1\)

<=> 1 - (a2 - a)2 \(\le\) 1 <=> (a2 - a)2 \(\ge\) 0 : Luôn đúng với mọi a => Bất đẳng thức đầu đúng với mọi 0 =< a <= 1

Dấu = xảy ra <=> a2 - a = 0 <=> a = 0 hoặc a = 1

10 tháng 7 2015

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\), Dấu "=" xảy ra khi x = y

Áp dụng bất đẳng thức trên ta có:

\(VT^2=\left(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\right)\le2\left(a^2-a+1+a-a^2+1\right)=4\)

\(\Rightarrow VT\le2=VP\)(đpcm)

Dấu "=" xảy ra khi \(\sqrt{a^2-a+1}=\sqrt{a-a^2+1}\Leftrightarrow a^2-a=a-a^2\Leftrightarrow2a\left(a-1\right)=0\Leftrightarrow a=0\text{ hoặc }a=1\)

 

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bạn xem lời giải tại đây:

https://hoc24.vn/hoi-dap/question/176012.html

1 tháng 2 2017

Câu hỏi của Nguyễn Minh Tuấn - Toán lớp 10 | Học trực tuyến

vì 0<a<1 ;0<b<2 ;0<c<3

=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1

=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)

c/m tương tự với b,c

=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)

và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)

Cộng các vế của bđt với nhau

=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6

Vậy GTLN của A là 6

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-0a1-0b2-0c3tim-gtln-cua-a-dfracsqrt1-aa-dfracsqrt2-bb-dfracsqrt3-ccbai-nay-dung-cauchyminh-suy-nghi.179994478119

 

4 tháng 7 2019

\(M=\left(\frac{3}{\sqrt{a+1}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}+1\right)\)

\(=\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\right):\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{\left(1+a\right)\left(1-a\right)}}\right)\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}.\frac{\sqrt{\left(1+a\right)\left(1-a\right)}}{3+\sqrt{\left(1-a\right)\left(1+a\right)}}\)

\(=\sqrt{1-a}\left(đpcm\right)\)

18 tháng 8 2018

bn viết lại pt đi

18 tháng 8 2018

đây nè bạn \(A=\left(\sqrt{a}+\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)