C/m x(4-x) < hoặc =4 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta'=\left(m-1\right)^2-3\left(m+4\right)< 0\)
\(\Leftrightarrow m^2-5m-11< 0\Rightarrow\frac{5-\sqrt{69}}{2}< m< \frac{5+\sqrt{69}}{2}\)
b/ \(\left\{{}\begin{matrix}m< 0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m-1\right)\left(3m+1\right)\ge0\end{matrix}\right.\) \(\Rightarrow m\le-\frac{1}{3}\)
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{x^6}{y^2}+x^2y^2\ge2\sqrt{\frac{x^8y^2}{y^2}}=2x^4\)
\(\frac{y^6}{x^2}+x^2y^2\ge2\sqrt{\frac{y^8x^2}{x^2}}=2y^4\)
Cộng từng các BĐT trên:
\(\frac{x^6}{y^2}+2x^2y^2+\frac{y^6}{x^2}\ge2x^4+2y^4\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+x^4+y^4+y^4-2x^2y^2\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4+\left(x^2-y^2\right)^2\ge x^4+y^4\)
Vậy \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)
(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\))
Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...
Chúc bạn học tốt!
\(A=x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\)
\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
tự làm tiếp đi chị
Với điều kiện x và (4 - x) không âm thì ta có \(x+\left(4-x\right)\ge2\sqrt{x\left(4-x\right)}\)Hay là \(2\ge\sqrt{x\left(4-x\right)}\)
Hai vế không âm, bình phương hai vế, được \(4\ge x\left(4-x\right)\) điều phải chứng minh.