K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2023

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: ΔABD=ΔACE

=>AD=AE

Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

=>EI=DI

c: ΔABD=ΔACE

=>BD=CE

BI+DI=BD

CI+EI=CE
mà EI=DI và BD=CE

nên BI=CI

IB=IC

AB=AC

Do đó: AI là đường trung trực của BC

=>AI\(\perp\)BC

15 tháng 12 2020

K lm mà đòi cs ăn thì ăn đầu buồy!!

 

bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.

18 tháng 12 2017

A B C D E I H

a) Cm BD = CE

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)là tam giác cân tại A

Xét \(\Delta EBC\)và \(\Delta DCB\)

Góc B = Góc C (Vì \(\Delta ABC\)cân)

BC : cạnh huyền chung

=> \(\Delta EBC=\Delta DCB\)(cạnh huyền - góc nhọn)

=> BD = CE (cạnh tương ứng) => ĐPCM

b) CM: EI = DI

Xét \(\Delta AHB\)và \(\Delta AHC\)có \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(gt\right)\\BH=HC\left(gt\right)\end{cases}\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)}\)

=> \(\widehat{BAH}=\widehat{CAH}\)(góc tương ứng)

xét tam giác vuông AIE và tam giác vuông AID có

AI là cạnh huyền chung

\(\widehat{BAH}=\widehat{CAH}\) ( cmt)

do đó \(\Delta AIE=\Delta AID\) ( cạnh huyền - góc nhọn )

suy ra EI = ID ( 2 cạnh tương ứng )

c)   \(\widehat{BAH}=\widehat{CAH}\) mà tia AH nằm giữa tia AB và AC nên AH là phân giác \(\widehat{BAC}\) (1)

\(\Delta AIE=\Delta AID\) suy ra \(\widehat{EAI}=\widehat{DAI}\) ( 2 góc tương ứng )

mà tia AI nằm giữa 2 tia AE và AD suy ra AI là phân giác \(\widehat{EAD}\) hay \(\widehat{BAD}\) (2)

từ (1)  và (2) suy ra ba điểm A;I:H thẳng hàng 

18 tháng 1 2021

Sửa lại đề : A < 90*

a, Chứng minh 

\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\RightarrowĐPCM\)

b, CM được :

\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)

\(\Rightarrow DE//BC\)

c, CM được : \(\widehat{IBC}=\widehat{ICB}\)

\(\RightarrowĐPCM\)

d, Gọi M là giao điểm của AI và BC ,

CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)

\(\RightarrowĐPCM\)

A D E C M B I

13 tháng 3 2022

HAHA

18 tháng 12 2016

a) Xét tam giác ABD và tam giác ACE có 
góc ADB = góc AEC = 90 độ 
AB=AC 
góc A: chung 
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn) 
=> BD=CE và AD=AE 
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD 
Xét tam giác OEB và tam giác ODC có 
góc OEB = góc ODC = 90 độ 
BE=CD 
góc BOE = góc COD (đối đỉnh) 
=> tam giác OEB = tam giác ODC => OB=OC 
c) Xét tam giác AOB và tam giác AOC có 
AB=AC 
OB=OC 
AO: cạnh chung 
=> tam giác AOB = tam giác AOC (c.c.c) 
=> góc OAB=góc OAC 
=> AO la tia phân giác góc BAC

Bài mk lm như dzị ak

15 tháng 2 2018
Cho tam giác ABC cân tại A,Kẻ BD vuông góc với AC,CE vuông góc với AB,BD và CE cắt nhau tại I,Chứng minh tam giác BDC = tam giác CEB,So sánh góc IBE và góc ICD,AI cắt BC tại H,Chứng minh AI vuông góc BC tại H,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7a, tg ADB và tg AEC có
^E1 = ^D1 = 90 độ
AB = AC 
^A chung
=> tg ADB = tg AEC
=> AD = AE
=> tg ADE cân
b, tg ABI và tg ACI có
^E1 = ^D1 = 90 độ
AI chung
 AB = AC
=> tg ABI = tg ACI 
=> ^A1 = ^A2 ( góc t/ứ)
=> IB = IC ( cạnh t/ứ)
=> tg IBC cân
c, vì ^A1 = ^A2 ( câu b )
=> AI là tpg của góc EAD
19 tháng 12 2019

a, xét tam giác ABD và tam giác ACE có góc A chung

AB = AC (gt)

góc ADB = góc AEC = 90 

=> tam giác ABD = tam giác ACE (ch-gn)

b, tam giác abd = tam giác ACE (câu a)

=> góc ABD = góc ACE (Đn)

AB = AC (gt) => tam giác ABC cân tại  A (Đn) => góc ABC = góc ACB

có ABD + góc DBC = góc ABC 

góc ACE + góc ECB = góc ACB 

=> góc DBC = góc ECB

=> Tam giác IBC cân tại I 

=> IB = IC

xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)

góc BEC = góc CDB = 90

=> tam giác EIB = tam giác DIC (ch-gn)

=> EI = ID (đn)

16 tháng 12 2021

đn là gì đấy bạn