Xác định m đẻ bất phương trình có nghiệm đúng với mọi \(x\)
\(\left(m^2-4m+3\right)x+m-m^2< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^2-4m+3=\left(m-1\right)\left(m-3\right)\)
\(m^2-m=m\left(m-1\right)\)
\(\left(m^2-4m+3\right)x< m^2-m\Leftrightarrow\left(m-1\right)\left(m-3\right)x< m\left(m-1\right)\)(1)
+) TH1: (m-1)(m-3)=0 <=> \(\orbr{\begin{cases}m-1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)
Với m=1 thay vào (1): 0x<0 Vô lí
=> m=1, bất phương trình (1) vô nghiệm
Với m=3 thay vào (1), ta có: 0x<6 ( luôn đúng)
=> m=3, bất phương trình (1) có nghiệm với mọi x
+)TH2: \(\left(m-1\right).\left(m-3\right)>0\Leftrightarrow\orbr{\begin{cases}m>1\\m< 3\end{cases}}\)
(1) có nghiệm : \(x< \frac{m}{m-3}\)
+) TH3: 1<m<3
(1) có nghiệm :: \(x>\frac{m}{m-3}\)
Từ các trường hợp trên: Để bất phương trình có nghiệm đúng với mọi x : m=3
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)