a. Tìm 2 số tự nhiên biết tổng của chúng là 288 và UWCLN của chúng bằng 24
b. Tìm số tự nhiên nhỏ nhất chia cho 3, 4, 5 thì có số dư lần lượt là 1, 3, 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi hai số đó là a và b
Ta có: a+b=3(a-b)
=> a+b = 3a -3b
=> a+b +3b = 3a
=> a+ 4b = 3a => 4b = 2a => 2b = a => a : b = 2
ĐS : 2
2) Gọi thương của phép chia A chia cho 54 là b
Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38
=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2
=> a chia cho 18 được thương là 3b + 2 ; dư 2
Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4
Vậy a = 54.4 + 38 = 254
3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ
Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4
=> Không tồn tại 3 số như vậy
b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ
Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số lẻ là số chẵn => Không tồn tại 4 số thỏa mãn tổng là số lẻ
~ Học tốt ~
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Bài 1: Tìm 2 số lẽ liên tiếp có tổng là 1444?
Số bé là: 1444 : 2 – 1 = 721
Số lớn là: 721 + 2 = 723
Bài 2: Tìm 2 số tự nhiên liên tiếp có tổng là 215?
Số bé là: (215 – 1) : 2 = 107
Số lớn là: 215 – 107 = 108
Bài 3: Tìm số tự nhiên A; biết A lớn hơn TBC của A và các số 38; 42; 67 là 9 đơn vị?
TBC của 4 số là: (38 + 42 + 67 + 9) : 3 = 52 .
Vậy A là: 52 + 9 = 61
Bài 4: Tìm số tự nhiên B; biết B lớn hơn TBC của B và các số 98; 125 là 19 đơn vị?
TBC của 3 số là: (98 + 125 + 19) : 2 = 121 .
Vậy B là: 121 + 19 = 140
Bài 5: Tìm số tự nhiên C; biết C bé hơn TBC của C và các số 68; 72; 99 là 14 đơn vị?
TBC của 3 số là: [(68 + 72 + 99) – 14] : 3 = 75
Vậy C là: 75 – 14 = 61
Bài 6: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 3 dư 41 và tổng của hai số đó là 425?
- Ta có số bé bằng 1 phần; số lớn 3 phần (số thương)
Tổng số phần: 3 + 1 = 4
- Số bé = (Tổng - số dư) : số phần
Số bé là: (425 - 41) : 4 = 96
- Số lớn = Số bé x Thương + số dư
Số lớn là: 96 x 3 + 41 = 329
Bài 7: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 2 dư 9 và hiệu của hai số đó là 57?
- Ta có số bé bằng 1 phần; số lớn 2 phần (số thương)
Hiệu số phần: 2 -1 = 1
- Số bé = (Hiệu - số dư) : số phần
Số bé là: (57 - 9) : 1 = 48
- Số lớn = Số bé x Thương + số dư
Số lớn là: 48 x 2 + 9 = 105
Bài 8: Tìm 2 số biết thương của chúng bằng hiệu của chúng và bằng 1,25?
- Đổi số thương ra phân số thập phân, rút gọn tối giản.
Đổi 1,25 = 125/100 = 5/4
- Vậy số bé = 4 phần, số lớn 5 phần (Toán hiệu tỉ)
Hiệu số phần: 5 - 4 = 1
- Số lớn = (Hiệu : hiệu số phần ) x phần số lớn
Số lớn: (1,25 : 1) x 5 = 6,25
- Số bé = Số lớn - hiệu
Số bé: 6,25 - 1,25 = 5
Bài 9: Tìm 2 số có tổng của chúng bằng 280 và thương chúng là 0,6?
Đổi số thương ra phân số thập phân, rút gọn tối giản
Đổi 0,6 = 6/10 = 3/5
- Vậy số bé = 3 phần, số lớn 5 phần (Toán tổng tỉ)
Tổng số phần: 5 + 3 = 8
- Số lớn = (Tổng : tổng số phần) x phần số lớn
Số lớn: (280 : 8) x 5 = 175
- Số bé = Tổng - số lớn
Số bé : 280 - 175 = 105
Bài 10: Tìm hai số tự nhiên có tổng là 2013 và giữa chúng có 20 số tự nhiên khác?
- Hiệu của 2 số đó là: 20 x 1 + 1 = 21
- Số lớn: (2013 + 21) : 2 = 1017
- Số bé: 2013 - 1017 = 996
Bài 1:
Gọi hai số tự nhiên cần tìm là a,b
Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)
Tổng của hai số là 100 nên a+b=100(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)
Bài 2:
Gọi hai số cần tìm là a,b
Hiệu của hai số là 10 nên a-b=10(4)
Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)
Bài 3:
Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)
Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:
\(\overline{ab}+\overline{ba}=77\)
=>\(10a+b+10b+a=77\)
=>11a+11b=77
=>a+b=7(6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)
Vậy: Số tự nhiên cần tìm là 16