Cho hai đường tròn (O) đường kính AB. Vẽ dây AC tùy ý và hai tiếp tuyến của đường tròn tại B và C. Hai tiếp tuyến này cắt nhau tại P. Chứng minh OP//AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có A và C cùng nhìn MO dưới 1 góc vuông nên A và C thuộc đường tròn đường kính MO => OAMC là tứ giác nội tiếp)
b/
Ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp MB\)
Xét tg vuông AMO có
\(MA^2=MD.MB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Mà MA=MC (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> \(MC^2=MB.MD\)
c/
Khi tg AMO quay xung quang AM thì tạo thành hình chóp có đáy là đường tròn tâm A bán kính OA=R, trung đoạn là MO=2R
\(S_{xq}=\dfrac{1}{2}\Pi R.MO=\Pi.R^2\)
a: Xét (O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là trung trực của AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: Xét tứ giác MEOF có
góc MEO=góc MFO=góc EOF=90 độ
nên MEOF là hình chữ nhật
=>EF=MO=R
ACB = 90 (góc chắn nửa đường tròn) =>AC vuông góc BC
PB,PC là 2 tiếp tuyến (O) tại tiếp điểm B,C. => PB=PC và PO là phân giác BPC
=>PO vuông góc với BC. => OP song song với AC