Tính A=\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}bietx+y=-z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)=\(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}\)vì x+y=z \(\Rightarrow\)x+y là số đối của z
\(\Rightarrow\)x+y+z=0
\(\Rightarrow\frac{-5}{21}.x+y+z=\frac{-5}{21}.0=0\)
\(\Rightarrow\)A=0
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
bài 1:rất dễ,nhân chéo sẽ giải đc
bài 2: x+y=-x
=>x+y+z=0
Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)
bài 1:
\(\frac{1}{2a^2+1}:x=2\)
\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)
\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)
\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)
x + y = -z => x+y +z = -z + z =0
\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}.\frac{-5.0}{21}=\frac{0}{21}=0\)
A = \(\frac{-5x}{21}\)+ \(\frac{-5y}{21}\)+ \(\frac{-5x}{21}\)
= \(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5x\right)}{21}\)
vì x + y là số dõi của z
=> x + y + z = 0
=> \(\frac{5.\left(x+y+z\right)}{21}\)
= \(\frac{-5}{21}\). 0 = 0
=> A = 0
hok tốt !
Thay -z=x+y vào biểu thức A ta có A=-5x/21+(-5y/21)+[5(x+y)/21] =>-5x/21 +(-5y/21)+(5x+5y)/21=>-5x/21+(-5y/21)+5x/21+5y/21 => A = 0
= \(\frac{-10z}{21} + \frac{-5z}{21} \) = \(\frac{-15z}{21} \)
Ta có :
A = \(\frac{-5.x}{21}+\frac{-5.y}{21}+\frac{-5.z}{21}\)
= \(\frac{-5}{21}.\left(x+y+z\right)\)
= \(\frac{-5}{21}.\left(-z+z\right)\)
= \(\frac{-5}{21}.0\)
= 0
Vậy A = 0