K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Ta có:

\(A=1+2+2^2+...+2^{2002}\)

\(2A=2+2^2+2^3+...+2^{2003}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)

\(A=2^{2003}-1\)

Mà: \(2^{2003}=2^{2003}\)

\(\Rightarrow2^{2003}-1< 2^{2003}\)

\(\Rightarrow A< B\)

4 tháng 2 2019

A=4+22+23+....+220

2A=8+23+24+...+221

=> A+2A-A = (8+23+24+...+221)  - (4+22+23+....+220)

=>A=221+8 - (22+4)=221

=>A là 1 lũy thừa của 2

12 tháng 11 2023

A= 4+22+23+....+220

2A= 8+23+24+...+221

A + 2A  -A = (8+2^3+2^4+...+2^21)  - (4+2^2+2^3+....+2^20)

A= 2^21+8 - (2^2+4)=2^21

Vậy A là 1 lũy thừa của 2

14 tháng 10 2023

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

14 tháng 10 2023

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

30 tháng 10 2016

ĐỀ ĐÚNG KHÔNG ĐẤY SAO LẠI CÓ 23 

31 tháng 10 2016

Mình ko biết, thầy ra mà

10 tháng 6 2021

Ta có:  A=212121/202020=21/20

Ta thấy:   A=21/20=1+1/20

                B=22/21=1+1/21

Vì 1/20>1/21 nên 21/20>22/21

Vậy A>B

14 tháng 10 2023

\(A=2^0+2^1+2^2+...+2^{20}\)

\(2A=2^1+2^2+2^3+...+2^{21}\)

\(A=2^{21}-1\)

Vậy \(A>B\)

 
9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)