Tìm m để 3 đường thẳng y=2x+5,y=-x+m và y=2-x đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2-2x+3=0\\y=3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\cdot\left(-5\right)+2=-15+2=-13\end{matrix}\right.\)
Vậy: Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là (-5;-13)
2) Đặt (d1): y=3x+2;
(d2): y=2x-3;
(d3): y=(m-2)x+3-m
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=2\cdot\left(-5\right)-3=-13\end{matrix}\right.\)
Để (d1), (d2) và (d3) đồng quy thì (d3) đi qua tọa độ giao điểm của (d1) và (d2)
Thay x=-5 và y=-13 vào (d3), ta được:
\(\left(m-2\right)\cdot\left(-5\right)+3-m=-13\)
\(\Leftrightarrow-5m+10+3-m+13=0\)
\(\Leftrightarrow-6m+26=0\)
\(\Leftrightarrow-6m=-26\)
hay \(m=\dfrac{13}{3}\)
Vậy: Để 3 đường thẳng y=3x+2; y=2x-3 và y=(m-2)x+3-m đồng quy thì \(m=\dfrac{13}{3}\)
b: Phương trình hoành độ giao điểm của y=3x+2 và y=2x-1 là:
3x+2=2x-1
\(\Leftrightarrow x=-3\)
Thay x=-3 vào y=3x+2, ta được:
\(y=3\cdot\left(-3\right)+2=-9+2=-7\)
Thay x=-3 và y=-7 vào y=x-4, ta được:
\(-3-4=-7\left(đúng\right)\)
Phương trình hoành độ giao điểm là:
2x+1=x-2
\(\Leftrightarrow x=-3\)
Thay x=-3 vào y=x-2, ta được:
y=-3-2=-5
Thay x=-3 và y=-5 vào \(y=\left(2m-1\right)x-m+3\), ta được:
\(-6m+3-m+3=-5\)
\(\Leftrightarrow-7m=-11\)
hay \(m=\dfrac{11}{7}\)
Hoành độ giao điểm của d1 và d2 là nghiệm của phương trình :
2x = -x - 3 <=> 3x = -3 <=> x = -1
Thế x = -1 vào d1 => y = -2
=> d1 và d2 đồng quy tại điểm ( -1 ; -2 )
Để d1 , d2 , d3 đồng quy thì d3 phải đi qua điểm ( -1 ; -2 )
tức -2 = -m + 5 <=> m = 7
Phương trình hoành độ giao điểm của (d1) và (d2) là:
2x=-x-3
\(\Leftrightarrow3x=-3\)
hay x=-1
Thay x=-1 vào (d1), ta được:
\(y=2\cdot\left(-1\right)=-2\)
Thay x=-1 và y=-2 vào (d3), ta được:
\(-m+5=-2\)
\(\Leftrightarrow-m=-7\)
hay m=7
Phương trình hoành độ giao điểm của (d1) và (d2) là:
2x=-x-3
\(\Leftrightarrow3x=-3\)
hay x=-1
Thay x=-1 vào (d1), ta được:
\(y=2\cdot\left(-1\right)=-2\)
Thay x=-1 và y=-2 vào (d3), ta được:
\(-m+5=-2\)
\(\Leftrightarrow-m=-7\)
hay m=7
Đáp án C
Hoành độ giao điểm của d 1 và d 2 là nghiệm phương trình:
2x + 1 = x -1 nên x = -2
Với x = -2 thì y = 2. (-2) + 1 = -3
Vậy 2 đường thẳng d 1 và d2 cắt nhau tại A(-2; -3).
Để ba đường thẳng đã cho đồng quy thì điểm A(-2; -3) thuộc đồ thị hàm số y = (m + 1)x – 2
Suy ra: -3 = (m + 1).(-2) - 2
a, pt hoanh độ giao điểm cua 2 đg thẳng d1 và d2 la: 2x - 5 = 1 <=> x = 3
vậy tọa độ giao điểm cua d1 va d2 la A(3;1)
Để d1 , d2, d3 đồng quy thì d3 phải đi qua diem A(3;1)
Ta co pt: (2m - 3).3 - 1 = 1
<=> 6m - 9 -1 = 1
<=> 6m = 11 <=> m = 11/6
mấy bài còn lại tương tự nha
Cho hàm số y = (2m - 3)x + m - 1
Điều kiện: 2m - 3 ≠ 0 ⇔ m ≠ 3/2
c) Tìm m để đồ thị đồng quy với 2 đường thẳng y = 2x + 3 và y = 5x - 3
Tọa độ giao điểm của 2 đường thẳng y = 2x + 3 và y = 5x - 3 là nghiệm của hệ phương trình
Đồ thị hàm số y = (2m - 3)x + m - 1 đồng quy với 2 đường thẳng y = 2x + 3 và y = 5x - 3 khi đường thẳng y = (2m - 3)x + m - 1 đi qua điểm (2; 7)
⇔ 7 = (2m-3).2 + m - 1
⇔ 5m - 7 = 7
⇔ m = 14/5 (TM điều kiện)
Vậy với m = 14/5 thì 3 đường thẳng trên đồng quy
Tọa độ giao điểm của hai đường thẳng y=2x+5 và y=2-x là:
\(\left\{{}\begin{matrix}2x+5=2-x\\y=2-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-3\\y=2-x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=2-\left(-1\right)=3\end{matrix}\right.\)
Thay x=-1 và y=3 vào y=-x+m, ta được:
m-(-1)=3
=>m+1=3
=>m=2