cho tam giác ABC nhọn nội tiếp (O,R) kẻ đường cao AD, BE của tam giác ABC, tia AD ; BE cắt(O) tại điểm thứ 2 là M,N.
a) 4 điểm A; E; D;B thuộc một đường tròn, tìm tâm I của đường tròn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEB=góc AHB=90 độ
=>ABHE nội tiếp
b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC
=>HE//CD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{ABD}=\widehat{AKC}\)
Xét (O) có
\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)
\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)
Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB\(\sim\)ΔACK(g-g)
giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
=>AEDB là tứ giác nội tiếp đường tròn đường kính AB
=>A,E,D,B cùng thuộc đường tròn đường kính AB
Tâm I của đường tròn này là trung điểm của AB