Rút gọn các biểu thức:
a, |a|+a
b,|a|-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
\(\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\sqrt{ab}}{b}\)
\(\sqrt{a^3b}+\sqrt{ab^3}-\frac{ab}{\sqrt{ab}}\)
<=>\(a\sqrt{ab}+b\sqrt{ab}-\sqrt{ab}\)
<=>\(\left(a+b-1\right)\sqrt{ab}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)
\(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\frac{\left(a+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{\left(a+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)
Có ai lm đc thì giúp mk vs mai mk pải nộp rùi...
a, Nếu \(a\ge0\)
\(\Rightarrow\left|a\right|=a\)
\(\Rightarrow\left|a\right|+a=a+a=2a\)
Nếu \(a< 0\)
\(\Rightarrow\left|a\right|=-a\)
\(\Rightarrow\left|a\right|+a=-a+a=0\)
Câu b làm tương tự