K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$

$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$

$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$

$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$

Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$

Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$

$\Rightarrow x-y-6=y-1=0$

$\Rightarrow y=1; x=7$

$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$

$=2021-8=2013$

2 tháng 12 2017

Giải:

Đặt \(A=x+y+2017\) Ta có: \(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Mà \(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\) \(\Leftrightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow2013\le A\le2015\) Dấu "=" xảy ra:

\(A_{MIN}\Leftrightarrow\hept{\begin{cases}x+y+2017=2013\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

\(A_{MAX}\Leftrightarrow\hept{\begin{cases}x+y+2017=2015\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)

26 tháng 12 2018

đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá

14 tháng 9 2021

\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)

\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)

\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

8 tháng 1 2023

s y=0 v ạ 

15 tháng 2 2020

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Rightarrow2012\le x+y+2016\le2014\)

Vậy ta có : 

+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)

+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

21 tháng 12 2017

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\left(x+y+3\right)^2=1-y^2\)

Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)

B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)

B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)

17 tháng 9 2019

\(\left(x+y+3\right)^2=1-y^2\)

Ta thấy \(1-y^2\le1\) do \(y^2\ge0\forall y\)

Suy ra \( \left(x+y+3\right)^2\le1\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow2012\le x+y+2016\le2014\)

\(Min_{\left(B\right)}=2012\Leftrightarrow x=-4;y=0\)

\(Max_{\left(B\right)}=2014\Leftrightarrow x=-2;y=0\)

Chúc bạn học tốt !!!