Tìm thương của phép chia: [9x^3 (x^2 - 1) − 6x^2 (x^2 - 1)^2 + 12x(x^2 -1)]: 3x(x^2 - 1). Giúp mik vs, mik cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
\(\dfrac{1}{2}-\dfrac{5}{12}x=\dfrac{2}{3}\)
\(\dfrac{5}{12}x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3}{6}-\dfrac{4}{6}\)
\(\dfrac{5}{12}x=\dfrac{-1}{6}\)
\(x=\dfrac{-1}{6}:\dfrac{5}{12}=\dfrac{-1}{6}.\dfrac{12}{5}\)
\(x=\dfrac{-2}{5}\)
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
Câu 1:
Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)
\(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)
\(=-2xy\)
Tại \(x=\frac{1}{2};y=-100\) PT có dạng:
\(=-2.\frac{1}{2}.\left(-100\right)=100\)
[9x³(x² - 1) - 6x²(x² - 1) + 12x(x² - 1)] : 3x(x² - 1)
= [9x³(x² - 1) : 3x(x² - 1)] - [6x²(x² - 1) : 3x(x² - 1) + [12x(x² - 1) : 3x(x² - 1)]
= 3x² - 2x + 4