Chứng minh rằng : 2 + 2^2 + 2 + 3 + ... + 2^99 + 2^100 giúp mình với các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$
nhưng xl, mk là cn gái ko pải cn trai, muốn ko, thử thj` khắc biết
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Mình chỉ biết làm ý a thôi :)
S = 21 + 22 + 23 + ... + 299 + 2100
S = ( 21 + 22 ) + ... + ( 299 + 2100 )
S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )
S = 21 . 3 + ... + 299 . 3
S = 3( 21 + ... + 299 ) chia hết cho 3
\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có :
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)
Vậy \(A⋮6\)
\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có :
\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(B=2.31+...+2^{96}.31\)
\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)
Vậy \(B⋮31\)
Năm mới zui zẻ ^^
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+...+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+...+2^{96}.31\)
\(\Rightarrow C⋮31\)
Học tốt nha!!!
Ta có : \(C=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4.\left(2+2^2+2^3+2^4\right)+...+2^{96}.\left(2+2^2+2^3+2^4\right)\)
\(=62+2^4.62+....+2^{96}.62\)
\(=62.\left(1+2^4+...+2^{96}\right)\)
\(=31.2.\left(1+2^2+....+2^{96}\right)⋮31\)
\(\Rightarrow C⋮31\left(\text{ĐPCM}\right)\)
dzserfgttdresawzsqWEDRTFGHYJUKI' M NNNNNNM NJIBHGYFTDRSEAWQ