Cho hình vuông ABCD, lấy điểm E nằm giữa hai điểm C và D. Tia phân giác của goc DAE cắt DE tại M. Tia phân giác của góc BAE cắt BC tại N. Chứng minh MN vuông góc với AE.
#Toán lớp 8
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 11 2023
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
HS
15 tháng 6 2017
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE