Cho Parabal y= -x² + bx + c . Có điểm M(2;10) là điểm có tung độ lớn nhất. Tính giá trị của bc giải giúp e với chiều nay thi rồi ạaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét pt hoành độ giao điểm:
\(-x^2=2x+m\)
⇔ \(x^2+2x+m=0\) (1)
Để (P) cắt (d) tại 2 điểm phân biệt có hoành độ âm thì pt (1) có 2 nghiệm âm phân biệt. Do đó:
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}4-4m>0\\-\dfrac{2}{1}< 0\left(TM\right)\\m>0\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\)⇔ 0 < m < 1
Vậy để (P) cắt (d) tại 2 điểm phân biệt có hoành độ đều âm thì 0 < m < 1
a, Vì đồ thị hàm số y= -3x + b cắt trục tung tại điểm có tung độ bằng 3
Nên y sẽ có giá trị bằng 3 và x có gá trị bằng 0
Thay y=3 ; x=0 vào hàm số ta đc: b=3
b, Vì Đths y= -3x + b cắt Đths y= 6x +5
Xét pt hoành độ giao điểm ta có: -3x + b = 6x +5
Mà 2 Đths cắt nau tại 1 điểm nằm trên truc tung nên x=0
Thay x=o vào pt trên ta đc b=5
c, Đths y=-3x+b giao vs parabal y=x^2
Xét pt hoành độ giao điểm ta có
x^2 = -3x + b => x^2 +3x -b = 0
Xét đen-ta của pt trên ta đc Đen-ta= b^2 - 4ac= 9+4b
mà Đths và parabal tiếp xúc nhau nên Đen-ta =0
Hay 9+4b=0 =>b=-9/4
Ta có: a=-1<0
=>Bề lõm của (P) quay xuống
M(2;10) là điểm có tung độ lớn nhất mà bề lõm của (P) quay xuống
nên M(2;10) là đỉnh của (P)
Do đó, ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2\cdot\left(-1\right)}=2\\-\dfrac{b^2-4\cdot\left(-1\right)\cdot c}{4\cdot\left(-1\right)}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{b}{2}=2\\\dfrac{b^2+4c}{4}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=4\\b^2+4c=4\cdot10=40\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=4\\4c=40-16=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=6\end{matrix}\right.\)
=>\(b\cdot c=24\)