Tìm x:
\(16\le\left(11x-4\right)\le18\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\le\frac{x^2+16-y}{2}+\frac{y+16-x^2}{2}=\frac{32}{2}=16\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x\ge0\\y=16-x^2\end{matrix}\right.\)
Với x,y,z >0 xét gt :
x(x+1) +y(y+1) + z( z+1 ) <=18
<=> ( x^2 + y^2 + z^2 ) + x+ y+z < hoac = 18
áp dụng bdt B.C.S co x^2 + y^2 + z^2 > hoac = ( x+y+z)^2 /3
=> ( x+y+z )^2/3 + (x+y+z) < hoac = 18
dat x+y+z =t ( t > 0)
tu cm dc t nho hon hoac bang 6
áp dụng bdt swarscher vao A => A > hoặc = 9/ ( 2*6 + 1*3 ) = 3/5
Ta có \(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
\(\Leftrightarrow x^2+y^2+z^2+\left(x+y+z\right)\le18\)
\(\Rightarrow54\ge\left(x+y+z\right)^2+3\left(x+y+z\right)\)
\(\Leftrightarrow-9\le x+y+z\le6\)
\(\Leftrightarrow0< x+y+z\le6\)
\(\hept{\begin{cases}\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\\\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\\\frac{1}{x+z+1}+\frac{x+z+1}{25}\ge\frac{2}{5}\end{cases}}\)
\(\Rightarrow A+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\Rightarrow A\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{100}>0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{100}\right|=x+\frac{1}{110}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
\(\Rightarrow10x+\frac{10}{11}=11x\)
\(\Rightarrow x=\frac{10}{11}\)
vì |x+1/2| ; |x+1/6| ; ............ ; |x+110| lớn hơn hoặc bằng 0=> 11x lớn hớn hoặc bằng 0=> x lớn hớn hoặc bằng 0
=>x+1/2 ; x+1/6 ; ............ ; x+110 lớn hơn hoặc bằng 0
ta có: x+1/2+x+1/6+x+1/12+...+x+1/110=11x
(x+x+...+x)+(1/1.2+1/2.3+1/3.4+...+1/10.11)=11x
10x+(1-1/10)=11x
x= 1/9
à mình bỏ dấu" | " vì khi mà lớn hơn hoặc bằng 1 rồi thfi bỏ ra nó vẫn có giá trị bằng giá trị trị lúc ban đầu
\(a,\frac{7}{8}-\frac{1}{4}.\frac{5}{2}=\frac{x}{16}\)
\(\frac{7}{8}-\frac{5}{8}=\frac{x}{16}\)
\(\frac{2}{8}=\frac{x}{16}\)
\(\frac{4}{16}=\frac{x}{16}\)
=> X=4
k nha
ta có
\(0\le\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\left(\forall x,y,z>0\right)\)
\(\Leftrightarrow2xy+2yz+2zx\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)(1)
dấu = xảy ra khi
\(x=y=z=0\)
theo giả thiết ta có
\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
\(\Leftrightarrow x^2+y^2+z^2\le18-\left(x+y+z\right)\left(2\right)\)
từ (1) zà (2) suy ra
\(\left(x+y+z\right)^2\le54-3\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)
\(\Leftrightarrow\left(x+y+z-6\right)\left(x+y+z+9\right)\le0\)
\(\Leftrightarrow0< x+y+z\le6\left(do\left(x+y+z>0;9>0\right)\right)\)
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có
\(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)
Dấu = xảy ra khi zà chỉ khi
\(\hept{\begin{cases}x+y+1=y+z+1=z+x+1\\x+y+z=6\end{cases}=>x=y=z=2}\)
zậy MinP= 3/5 khi x=y=z=2
Ta có : x(x + 1) + y (y+1 ) + z(z + 1) \(\le18\)
<=> x2 + y2 + z2 + ( x + y + z ) \(\le18\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
=> 54 \(\ge\)( x + y+z)2 + 3(x + y + z)
<=> -9 \(\le\)x + y + z \(\le\)6
=> 0 \(\le\)x+y+z \(\le\)6
\(\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\)
=> \(P+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)
=> P \(\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)
Dấu " =" xảy ra khi :
\(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)
Vậy GTNN của P là \(\frac{3}{5}\)khi x = y =z =2
1)
\(\frac{7.8^3-5.2^{10}}{\left(-16\right)^2}\)
= \(\frac{7.2^8.2-5.2^8.2^2}{16^2}\)
= \(\frac{2^8.\left(2.7-5.2^2\right)}{2^8}\)
= \(\frac{2^8.\left(-6\right)}{2^8}\)
= \(-6\)
a/ BSCNN (12, 25, 30) = 22.52.3 = 4.25.3 = 300
=> X=300
b/ (3x-24).73=2.73 <=> 3x-16=2.74:73
<=> 3x-16=2.7 => 3x-16=14 => 3x=30 => x=10
c/ /x-5/=16+2.(-3) <=> /x-5/=16-6 <=> /x-5/=10 => x-5=\(\pm\)10
=> x=15 và x=-5
(11x-4)thuộc {16;17;18}
(+) 11x-4=16
<=>11x=20
<=>x=20/11
(+) 11x-4=17
<=>11x=21
<=>x=21/7
(+)11x-4=18
<=>11x=22
<=>x=2
vậy x=20/11 hoặc x=21/7 hoặc x=2
Vì\(16\le\left(11x-4\right)\le18\)
\(\Rightarrow11x-4\in\left(16;17;18\right)\)
\(\Rightarrow11x\in\left(20;21;22\right)\)
\(\Rightarrow x\in\left(\frac{20}{11};\frac{21}{11};2\right)\)