K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath

31 tháng 5 2018

độ dài lớn nhất của cạnh hình vuông chính là ƯCLN(52,36)=4m

1 tháng 1 2019

cho câu trả lời cả bài giải luôn đi !

22 tháng 12 2016

gọi x là cạnh hình vuông lớn nhất là

theo đề bài ta có

để thõa mãn đề bài

52:x;36:x  với x là số lớn nhất (1)

=>x là ước chung lớn nhất của 52;36

52=2^2.13

36=2^2^.3^3

=> ƯCLN(52:36)=2^2=4

vậy cách chia có độ dài là 4 m là số lớn nhất

sao lại 1 đám đất

18 tháng 12 2019

Gọi a là độ dài lớn nhất của cạnh hình vuông ( a\(\inℕ^∗\), m )

Người ta muốn chia đám đất thành những khoảng hình vuông bằng nhau nên suy ra:

52 \(⋮\)a  và   36\(⋮\)a

=> a \(\in\)Ư( 52; 36 )

Mà a lớn nhất

=> a = UCLN ( 52; 36)

Có: 52 = 2\(^2\).13  và 36 = 2\(^2\).3\(^2\)

=> a = 2\(^2\)=4 ( thỏa mãn)

Vậy độ dài lớn nhất của cạnh hình vuông là 4 m.

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
Giả sử người ta chia mảnh đất thành hình vuông có cạnh $n$ (m).

 $n$ chia hết cho $90,150$ nên $n$ là ƯC$(90,150)$

Để cạnh hình vuông lớn nhất thì $n$ là ƯCLN$(90,150)$

$\Rightarrow n=30$ (m)

 

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Để chia đám đất thành hình vuông bằng nhau, mà đảm bảo cạnh hình vuông lớn nhất, thì độ dài cạnh hình vuông đó phải là ước chung của $52,36$

Ta có:

$52=2^2.13$

$36=2^2.3^2$

$\Rightarrow$ độ dài cạnh hình vuông lớn nhất là: $2^2=4$ (m)

18 tháng 12 2022

Độ dài lớn nhất của cạnh hình vuông là ƯCLN(52; 36)

Ta có:

\(52=2^2.13\)

\(36=2^2.3^2\)

ƯCLN(52; 36) = 22 = 4

Vậy độ dài lớn nhất của cạnh hình vuông là 4 m