K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)

\(\overrightarrow{AD}-\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)

Do đó: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AD}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}-\overrightarrow{BC}\)

a: vecto AB-vecto AD

=vecto DA+vecto AB

=vecto DB

-vecto CD-veco BC

=vecto CB-vecto CD

=vecto DC+vecto CB=vecto DB

=>vecto AB+vecto CD=vecto AD-vecto BC

b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)

\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)

=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)

c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)

\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

NM
4 tháng 12 2020

A B C D

ta có \(\overrightarrow{BC}\cdot\left(2\overrightarrow{\cdot AD}-\overrightarrow{AB}\right)=2\cdot\overrightarrow{BC}\cdot\overrightarrow{AD}-\overrightarrow{BC}\cdot\overrightarrow{AB}=2a^2\)

(Do BC và AD cùng hướng, BC và AB vuông góc với nhau)

30 tháng 7 2019

+) vecto AC + vecto BD = vecto AD + vecto DC + vecto BC + vecto CD

= vecto AD + vecto BC (1)

+) vecto MN = \(\frac{1}{2}\left(\overrightarrow{MD}+\overrightarrow{MC}\right)\)

\(\Leftrightarrow2\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC} \)\(=\overrightarrow{AD}+\overrightarrow{BC}\)\(\left(2\right)\)

Từ (1),(2) => đpcm

30 tháng 7 2019

undefined

15 tháng 7 2017

giả thiết không có điểm S, sao làm câu b được.

15 tháng 7 2017

a) I là trung điểm

nên vectoAB+ vectoAC= 2AI (1)

vectoAD+ vectoAE=2AI (2)

Từ (1) và (2) suy ra câu a

b) vecto AB+ vectoAC= 2AI(cmt

vectoAD+ vectoAE= 2AI(cmt

vectoAS=vectoAB+ vectoAD+ vectoAC+ vectoAE

tương đương: vectoAS=(vectoAB+ vectoAC)+ (vectoAD+ vectoAE)

vectoAS=2AI+2AI= 4AI

NV
10 tháng 10 2020

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{CM}+\overrightarrow{MN}+\overrightarrow{ND}\)

\(=\left(\overrightarrow{AM}+\overrightarrow{CM}\right)+\left(\overrightarrow{NB}+\overrightarrow{ND}\right)+2\overrightarrow{MN}\)

\(=\overrightarrow{0}+\overrightarrow{0}+2\overrightarrow{MN}=2\overrightarrow{MN}\)

NV
7 tháng 10 2019

a/ \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\)

b/ \(\overrightarrow{MN}+2\overrightarrow{PO}+\overrightarrow{MQ}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{0}\)

NV
11 tháng 9 2021

\(\overrightarrow{AD}=\overrightarrow{BC}\) \(\Rightarrow\) ABCD là hình bình hành

Vậy D là đỉnh của hình bình hành ABCD

\(\overrightarrow{AE}=\overrightarrow{CA}\Rightarrow\overrightarrow{AE}-\overrightarrow{CA}=\overrightarrow{0}\Rightarrow\overrightarrow{AE}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow A\) là trung điểm CE hay E là điểm đối xứng C qua A

NV
11 tháng 9 2021

undefined