A=1+2+2^2+2^3+....+2^2022
Chứng minh A+1=2^2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
Lời giải:
\(A=2.2022^{2023}+2(1^{2023}+2^{2023}+3^{2023}+...+1010^{2023}+1011^{2023}+1012^{2023}+...+2021^{2023})\)
\(=2.2022^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})+1011^{2023}]\)
\(=2.2022^{2023}+2.1011^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})]\)
Dễ thấy: $2.2022^{2023}\vdots 2022; 2.1011^{2023}=2022.1011^{2023}\vdots 2022$
Đối với biểu thức trong ngoặc vuông thì: Nhớ rằng với mọi $n$ lẻ thì $a^n+b^n\vdots a+b$ nên $1^{2023}+2021^{2023}\vdots 2022; 2^{2023}+2019^{2023}\vdots 2022;...; 1010^{2023}+1012^{2023}\vdots 2022$
$\Rightarrow 2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+....+(1010^{2023}+1012^{2023})]\vdots 2022$
Do đó $A\vdots 2022$
A=1+2
20 +221 +2222 +...+2202122020 +2202222021
⇔2A=2121 +2222 +2323 +...+2202222021 +2202322022
⇔2A-A=(2121 +2222 +2323 +...+2202222021 +2202322022) - (1
20 +2121 +2222 +...+2202122020 +2202222021)
⇔A=2202322022 - 1
20
Vậy A-1=22023
22022
cho mk một tick nha.Chúc bạn học tốt