K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

giup mk di

25 tháng 7 2017

nhanh len cac ban oi

29 tháng 3 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)

\(\Leftrightarrow P=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)

\(\Leftrightarrow P=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\frac{x+1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow P=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}+1}{x+\sqrt{x}+1}\)

b) Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Để \(P\le0\Leftrightarrow-\sqrt{x}+1\le0\)

\(\Leftrightarrow-\sqrt{x}\le-1\)

\(\Leftrightarrow\sqrt{x}\ge1\)

\(\Leftrightarrow x\ge1\)

Vì đkxđ : \(x\ne1\)

Vậy để \(P\le0\Leftrightarrow x>1\)

từ cái đầu=>x-xy+y-xy=(1-x)(1-y)

<=>x+y-2xy=xy-x-y+1

<=>2(x+y)=3xy+1

\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)

\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)

với 3xy-1<(=)0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)

14 tháng 6 2019

\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)

\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)

\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)

\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)

Vậy min P=3/5 khi x=1, y=2

14 tháng 6 2019

Em co cach nay ngan gon hon, cac ban co the tham khao 

P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)

                                                   = \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)

                                                    \(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)

                                                     =\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)

                                                     =\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)

                                                      =\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )

                                                      =\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )

                                                      =\(\frac{3}{5}\) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\) 

Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1