Bài 8. Cho x>0, y>0, z>0 và \(x+y+z=\frac{3}{4}\) Tìm giá tri lớn nhất của biểu thức.
\(P=\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt[3]{1.1.\left(x+3y\right)}+\sqrt[3]{1.1.\left(y+3z\right)}+\sqrt[3]{1.1.\left(z+3x\right)}\)
\(VT\le\frac{1}{3}\left(1+1+x+3y\right)+\frac{1}{3}\left(1+1+y+3z\right)+\frac{1}{3}\left(1+1+z+3x\right)\)
\(VT\le\frac{1}{3}\left(6+4\left(x+y+z\right)\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Dấu = k xảy ra vì nếu x=y=z=\(\frac{1}{3}\) thì k thỏa mãn đk đề bài.
Áp dụng cauchy 3 số \(\sqrt[3]{x+3y}\)=1.1.\(\sqrt[3]{x+3y}\)\(\le\)\(\frac{1+1+x+3y}{3}\)
Tương tự ta có P\(\le\)\(\frac{2+2+2+\left(x+y+z\right)+3\left(x+y+z\right)}{3}\)=\(\frac{6+4\left(x+y+z\right)}{3}\)=\(\frac{6+3}{3}\)=3
Dấu = xảy ra khi : x=y=z=\(\frac{1}{4}\)
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Theo đề ra : x,y,z>0
Nên áp dụng BĐT cô si cho 3 số là 1;1 và x+3y ta được :
\(x+3y+1+1\ge3\sqrt[3]{\left(x+3y\right).1.1}\)
\(\Rightarrow\sqrt[3]{\left(x+3y\right).1.1}\le\frac{x+3y+1+1}{3}\)
\(\Leftrightarrow\sqrt[3]{x+3y}\le\frac{x+3y+2}{3}\)(1)
Tương tự ta cũng có được :
\(\sqrt[3]{y+3z}\le\frac{y+3z+2}{3}\) (2) \(\sqrt[3]{z+3x}\le\frac{z+3x+2}{3}\)(3)
Ta cộng vế theo vế của (1) ; (2) và (3) ta được: \(\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\le\frac{x+y+z+3\left(x+y+z\right)}{3}=\frac{\frac{3}{4}+3.\frac{3}{4}+6}{3}=3\)
Vậy GTLN của P là 3 khi x=y=z=\(\frac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có: VT\le \sqrt{3\sum \frac{x}{z+3x}}
Ta cần chứng minh \sum \frac{x}{z+3x} \leq \frac{3}{4}
\leftrightarrow \sum \frac{3x}{z+3x} \leq \frac{9}{4}
\leftrightarrow \sum(1-\frac{3x}{z+3x}) \geq \frac{3}{4}
\leftrightarrow \sum \frac{z}{z+3x} \geq \frac{3}{4}
Áp dụng BĐT Cauchy-Schwarz ta có:
\sum \frac{z}{z+3x}=\sum \frac{z^2}{z^2+3xz} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+xy+yz+zx} \geq \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}
Dấu "=" xảy ra khi x=y=z
P/s:OLM chặn paste r` mà có vài công thức OLM ko có nên mk ko paste dc đành gõ = latex thông cảm, trách thì trách OLM, ko hiểu dc thì bảo Ad dịch hộ
Áp dụng bđt AM-GM ta có:
\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)
\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)
\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)
Cộng từng vế các đẳng thức trên ta được:
\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)
\(\Rightarrow N\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
x, y, z \(\ge\)0 là đúng đấy
và bạn có thể giải bằng BĐT Cauchy đc ko
Có \(\sqrt{\frac{x}{\sqrt[]{3x+yz}}}=\sqrt[]{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}}\)
Làm tương tự với 2 cái còn lại
Ta sẽ dùng bđt cô si mở rộng: (a+b+c)^2<=3(a^2+b^2+c^2)
Đặt A là biểu thức để bài cho
Có A^2<=\(3\left(\frac{x}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt[]{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\right)\)
Ta có \(\frac{1}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
nên \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
làm tương tự với 2 ngoặc còn lại ta sẽ thấy A^2<=\(\frac{9}{2}\)
hay A<=\(\frac{3}{\sqrt{2}}\)
dấu bằng xảy ra khi x=y=z=1
Chúc bạn học tốt!
\(\frac{1}{\sqrt[3]{x+3y}}\ge\frac{1}{\frac{x+3y+1+1}{3}}=\frac{3}{x+3y+2}\\ \text{Tương tự }\Rightarrow P\ge\frac{3}{x+3y+2}+\frac{3}{y+3z+2}+\frac{3}{z+3x+2}\\ \ge3\cdot\frac{9}{x+3y+2+y+3z+2+z+3x+2}\\ =3\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)(với a,b,c > 0 )
\(\Leftrightarrow a^3+b^3+c^3\ge3abc\Leftrightarrow abc\le\frac{a^3+b^3+c^3}{3}\).
AD CT trên ta có :
\(1.1.\sqrt[3]{x+3y}\le\frac{1+1+x+3y}{3}\Leftrightarrow\sqrt[3]{x+3y}\le\frac{x+3y+2}{3}\).
Cmtt có : \(\sqrt[3]{y+3z}\le\frac{y+3z+2}{3};\sqrt[3]{z+3x}\le\frac{z+3x+2}{3}\)
\(\Rightarrow\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\le\frac{4\left(x+y+z\right)+6}{3}=3\)
AD BĐT Cộng mẫu số ta có:
\(\frac{1}{\sqrt[3]{x+3y}}+\frac{1}{\sqrt[3]{y+3z}}+\frac{1}{\sqrt[3]{z+3x}}\ge\frac{\left(1+1+1\right)^2}{\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}}\ge\frac{9}{3}=3\)Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=\frac{1}{4}\)
Vậy GTNN của b.thức là P = 3 khi a = b = c =\(\frac{1}{4}\)
Do x+y+z=3 nên: \(3x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\)
tương tự và thay vào biểu thức
\(\Rightarrow A=\frac{x}{x+\sqrt{\left(x+z\right)\left(x+y\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Áp dụng bđt Bunyakovsky:
\(A\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}\)
\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Áp dụng BĐT Cauchy 3 số : \(a+b+c\ge3\sqrt[3]{abc}\), ta có :
\(\sqrt[3]{x+3y}=\frac{1}{3}.3.\sqrt[3]{1.1.\left(x+3y\right)}\le\frac{1}{3}\left(1+1+x+3y\right)\)
T.tự : \(\sqrt[3]{y+3z}\le\frac{1}{3}\left(1+1+y+3z\right)\)và \(\sqrt[3]{z+3x}\le\frac{1}{3}\left(1+1+z+3x\right)\)
Suy ra \(P\le\frac{1}{3}\left(1+1+x+3y+1+1+y+3z+1+1+z+3x\right)\)
\(\Leftrightarrow P\le\frac{1}{3}\left[6+4\left(x+y+z\right)\right]=\frac{1}{3}\left(6+4.\frac{3}{4}\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{4}\)
Vậy \(Max_P=3\)