cho tam giác abc có 3 góc nhọn.tìm điểm K ở trong tam giác sao cho KA.BC+KB.CA+KC.AB đạt gia trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng bên ngoài tam giác ABC tam giác ABD đều.
Vẽ tam giác AME đều sao cho D, E nằm cùng phía so với AM.
Dễ thấy \(\Delta AED=\Delta AMB\left(c.g.c\right)\).
Suy ra ED = MB.
Ta có \(MA+MB+MC=ME+ED+MC\ge CD\) không đổi.
Đẳng thức xảy ra khi và chỉ khi M thuộc CD và \(\widehat{AMD}=60^o\).
cho tam giác ABC. Tìm trên đường phân giác ngoài của góc A điểm M sao cho MB+MC đạt giá trị nhỏ nhất
Giả sử tìm được điểm M trong \(\Delta ABC\)thỏa mãn đề bài.Vẽ các tam giác đều \(AMM_1\)và \(ACM_2\)ta có :
\(\Delta AM_1M_2=\Delta AMC\left(c-g-c\right)\)
Do đó \(M_1M_2=MC\)
Vậy \(MA+MB+MC=BM+MM_1+M_1M_2\)
Tổng này đạt giá trị nhỏ nhất khi và chỉ khi bốn điểm \(B,M,M_1,M_2\)thẳng hàng
Khi đó : \(\widehat{BMA}+\widehat{AMM_1}=180^0\)và \(\widehat{AM_1M}+\widehat{AM_1M_2}=180^0\)
Mà \(\widehat{AMM_1}=\widehat{AM_1M}=60^0\)
\(\Rightarrow\widehat{AMB}=\widehat{AM_1M_2}=120^0\)
Vì \(\Delta AMC=\Delta AM_1M_2\),do đó \(\widehat{AMC}=\widehat{AM_1M_2}=120^0\)
Vậy M là điểm nằm trong tam giác ABC và \(\widehat{ABM}=\widehat{BMC}=\widehat{CMA}=120^0\).
bài nay f trong sách nâng cao chuyên đề hình học 8 phần cực trị nhé
bạn gi ra dùm mk với mình ko có sách đó.