K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không 

S = 1/2 + 1/3 + 1/4 +...... + 1/ n 

=> 1/ S = 2 + 3 + 4 +......+n 

=> 1 = ( 2+3+4 +......+ n)S 

=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n) 

vì n thuộc n nên ( 2+3+4+...+ n)  sẽ là số nguyên 

=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên 

Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1 

có 2 Th để dấu bằng xảy ra là 

2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1 

Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n 

Th1 không thể xảy ra vì 2=3+4=...+n khác 1 

nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số

16 tháng 1 2017

Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh

29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.

NV
23 tháng 7 2020

Để pt có 2 nghiệm dương:

\(\left\{{}\begin{matrix}\Delta'=\left(m-3\right)^2-\left(m-1\right)\ge0\\x_1+x_2=-2\left(m-3\right)>0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7m+10\ge0\\m< 3\\m>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge5\\m\le2\end{matrix}\right.\\m< 3\\m>1\end{matrix}\right.\)

\(\Rightarrow1< m\le2\)

\(\Leftrightarrow4\left(x^2+x-2\right)-\left(4x^2+11x-3\right)=2x-2\)

\(\Leftrightarrow4x^2+4x-8-4x^2-11x+3=2x-2\)

=>-7x-5=2x-2

=>-9x=3

hay x=-1/3

21 tháng 1 2022

\(A=x+\dfrac{1}{x-2}\\ \Rightarrow A=x-2+\dfrac{1}{x-2}+2\)

Áp dụng BĐT Cô-si ta có:

\(A=x-2+\dfrac{1}{x-2}+2\\ \ge2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}+2\\ =2\sqrt{1}+2\\ =4\)

 \(\text{Dấu "=" xảy ra}\Leftrightarrow x-2=\dfrac{1}{x-2}\\ \Leftrightarrow\left(x-2\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy \(A_{min}=4\Leftrightarrow x=3\)

\(A=x-2+\dfrac{1}{x-2}+2\ge2+2=4\)

Dấu '=' xảy ra khi x-2=1 hoặc x-2=-1

=>x=3 hoặc x=1