Cho đường tròn tâm O và điểm A nằm ngoài đường tròn . Kẻ các tiếp tuyến AB và AC với đường tròn ( B , C là các tiếp điểm )
a) chứng minh OA vuông góc BC
b) Vẽ đường kính CD . Chứng minh BD song song AO
c) tính độ dài các cạnh tam giâc ABC biết OB = 2cm , OA = 4cm
a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên \(\Delta ABC\) cân tại A.
Lại có AO là tia phân giác của góc A nên \(AO\perp BC\) (trong tam giác cân, đường phân giác cũng là đường cao)
b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).
Xét tam giác CBD có :
CI = IB
CO = OD (bán kính)
=> BD // HO (HO là đường trung bình của BCD) => BD // AO.
c) Theo định lí Pitago trong tam giác vuông OAC:
AC2 = OA2 – OC2 = 42 – 22 = 12
\(\Rightarrow AC=\sqrt{12}=2\sqrt{3}\left(cm\right)\)
Và \(\sin\widehat{OAC}=\frac{OC}{OA}=\frac{2}{4}=\frac{1}{2}\Rightarrow=\widehat{OAC}=30^o\)
Do đó \(\widehat{BAC}=2\widehat{OAC}=60^o\)
Tam giác ABC cân có \(\widehat{A}=60^o\)nên là tam giác đều
Do đó : \(AB=BC=AC=2\sqrt{3}\left(cm\right)\)
HO lòi ở đâu ra thế? phải là OI chứ