Chứng minh rằng: 1/2² + 1/3² + 1/4² +.......+1/50² < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2^2+1/3^2+1/4^2+...+1/50^2
A<1/1*2+1/2*3+1/3*4+...+1/49*50
A<1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
A<1-1/50<1
Vậy A<1
Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\left(đpcm\right)\)
\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1
ta có \(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
..........................
\(\frac{1}{50^2}\)<\(\frac{1}{49.50}\)
ta được \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{49.50}\)
=>1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-...-\(\frac{1}{49}\)+\(\frac{1}{49}\)-\(\frac{1}{50}\)
=>1-\(\frac{1}{50}\)<1 nên\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1
vậy ...........................
A = 1/2.2 + 1/3.3 + ......+ 1/50.50
A < 1/1.2 + 1/2.3 +......+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1 (đpcm)
*****k nha
Ta có: A=1/2^2+1/3^2+1/4^2+...+1/50^2<1
=> A<1/1.2+1/2.3+1/3.4+........+1/50.51
=>A< ( 1/1+ -1/2+1/2+ -1/3+1/3+ -1/4+1/4+ -1/5+1/5+.....+1/50+ -1/51)
=> A<1/1+ -1/51
=>A<51/51+ -1/51 =50/51<1
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{50}< 2\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< 2\)
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}=\frac{1}{1.1}+\frac{1}{2.2}+...+\frac{1}{50.50}\)
Mà \(\frac{1}{1.1}+\frac{1}{2.2}+...+\frac{1}{50.50}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
Lại có:
\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}=1+\frac{49}{50}< 2\RightarrowĐpcm\)
Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\left(\frac{1}{1}-\frac{1}{50}\right)\)
\(=1+\frac{49}{50}\)
Mà 1+49/50<2 nên A<1+49/50<2
Vậy A<2
Vì các p/s bé hơn 1 nên tổng nó bé hơn 1
thế thui
CM: A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\)+...+ \(\dfrac{1}{50^2}\) < 1
\(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
.............................
\(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A < 1 - \(\dfrac{1}{50}\)
A < 1 (đpcm)