tồn tại ko các số nguyên dương a,b,c thoả a(a+1)...(a+7)+1.2.3.4.5.6.7=b^2+c^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LP
0
NC
0
10 tháng 1 2022
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
a(a+1)(a+2)...(a+7) chia hết cho 7 nhưng không chia hết cho 49 ( do chỉ có 1 số chia hết cho 7)
1.2.3.4.5.6.7 chia hết cho 7. DO vậy VT chia hết cho 7 nhưng ko chia hết cho 49.
VP=b^2+c^2 chia hết cho 7 mà 7 là số nguyên tố có dạng 4k+3 nên b,c đều chia hết cho 7 (mệnh đề này nếu chưa biết có thể tìm trên mạng)
=>b^2+c^2 chia hết cho 49. KẾt hợp với trên => loại