tìm số nguyên n biết
(n2 + 2n - 3 ): ( n - 1 )
mk cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có : 2n - 5 = 2(n + 1) - 7
Do n + 1\(⋮\)n + 1 => 2(n + 1) \(⋮\)n + 1
Để 2n - 5 \(⋮\)n + 1 thì 7 \(⋮\)n + 1 => n + 1\(\in\)Ư(7) = {1; 7; -1; -7}
Lập bảng :
n + 1 | 1 | 7 | -1 | -7 |
n | 0 | 6 | -2 | -8 |
Vậy n \(\in\){0; 6; -2; -8} thì 2n - 5 \(⋮\)n + 1
a, \(\dfrac{15}{n-1}\); n∈Z
\(\dfrac{15\left(n-1\right)}{n-1}=\dfrac{15n-15}{n-1}\)
=> Ư(15)={\(\pm1;\pm3;\pm5;\pm15\)}
n-1 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -14 | -4 | -2 | 0 | 2 | 4 | 6 | 16 |
Đánh giá | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n∈{-14;-4;-2;0;2;4;6;16}
b, \(\dfrac{-21}{n+3}\) n∈Z
\(\dfrac{-21\left(n+3\right)}{n+3}=\dfrac{\left(-21n-63\right)}{n+3}\)
Ư(63)={±1;±3;±7;±9;±21;±63}
n+3 | -63 | -21 | -9 | -7 | -3 | -1 | 1 | 3 | 7 | 9 | 21 | 63 |
n | -66 | -24 | -12 | -10 | -6 | -4 | -2 | 0 | 4 | 6 | 18 | 60 |
Đ/gia | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n∈{-66;-24;-12;-10;-6;-4;-2;0;4;6;18;60}
\(\dfrac{2n+7}{n-2};n\inℤ\\ \Rightarrow\dfrac{\left(2n-4\right)+7+2}{n-2}=\dfrac{2\left(n-2\right)+9}{n-2}=2+\dfrac{9}{n-2}\)
\(\LeftrightarrowƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng sau:
n-2 | -9 | -3 | -1 | 1 | 3 | 9 |
n | -7 | -1 | 1 | 3 | 5 | 11 |
Đ/gia | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n={-7;-1;1;3;5;11}
Đk: n∈Zn∈Z
a)a) Để 1919 là bội của n−3n-3 thì:
19⋮n−319⋮n-3
⇒n−3∈Ư(19)={±1;±19}⇒n-3∈Ư(19)={±1;±19}
⇒n∈{2;4;−16;22}⇒n∈{2;4;-16;22}
b)b) Để 2n+72n+7 là bội của n−3n-3 thì:
2n+7⋮n−32n+7⋮n-3
⇒2n−6+13⋮n−3⇒2n-6+13⋮n-3
Vì 2n−6⋮n−32n-6⋮n-3
⇒13⋮n−3⇒13⋮n-3
⇒n−3∈Ư(13)={±1;±13}⇒n-3∈Ư(13)={±1;±13}
⇒n∈{2;4;−10;16}⇒n∈{2;4;-10;16}
c)c) Để n+2n+2 là ước của 5n−15n-1 thì:
5n−1⋮n+25n-1⋮n+2
⇒5n+10−11⋮n+2⇒5n+10-11⋮n+2
Vì 5n+10⋮n+25n+10⋮n+2
⇒−11⋮n+2⇒-11⋮n+2
⇒n+2∈Ư(−11)={±1;±11}⇒n+2∈Ư(-11)={±1;±11}
⇒n∈{−3;−1;−13;9}⇒n∈{-3;-1;-13;9}
d)d) Để n−3n-3 là bội của n2+4n2+4 thì:
n−3⋮n2+4n-3⋮n2+4
⇒(n−3)2⋮n2+4⇒(n-3)2⋮n2+4
⇒(n+3)(n−3)⋮n2+4⇒(n+3)(n-3)⋮n2+4
⇒n(n−3)+3(n−3)⋮n2+4⇒n(n-3)+3(n-3)⋮n2+4
⇒n2−3n+3n−9⋮n2+4⇒n2-3n+3n-9⋮n2+4
⇒n2−9⋮n2+4⇒n2-9⋮n2+4
⇒n2+4−13⋮n2+4⇒n2+4-13⋮n2+4
Vì n2+4⋮n2+4n2+4⋮n2+4
⇒−13⋮n2+4⇒-13⋮n2+4
⇒n2+4∈Ư(−13)={±1;±13}⇒n2+4∈Ư(-13)={±1;±13}
⇒n2∈{−5;−3;−17;9}⇒n2∈{-5;-3;-17;9}
⇒n2∈{9}⇒n2∈{9}
⇒n∈{±3}⇒n∈{±3}
Bài 3:
ƯC(−15;20)={±1;±5}
A=2n-1/n-3
A=2(n-3)+5/n-3
A=2+(5/n-3)
để A nguyên
thì2+(5/n-3) nguyen
thì5/n-3 nguyên
9
(n-3)(U(5)=(-5 ; -1 ; 1 ; 5 )
n((-2;2;4;8)
muốn A=2n-1/n-3 có giá trị là số nguyên thì
2n-1 chia hết cho n-3
(2n-6)+5 chia hết cho n-3
(2n-2*3)+5 chia hết cho n-3
2(n-3)+5 chia hết cho n-3
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
8n+5=(2n-1)x4 +9
(2n-1)x4chia hết cho (2n-1) => 9 chia hết cho (2n-1)
=> (2n-1) thuộc tập hợp bội 9
phần sau bạn giải nốt nhé!
a) \(2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) \(5^{n+1}=125\)
\(\Rightarrow5^{n+1}=5^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1=2\)
c) Mình không rõ đề:
d) \(2\cdot7^{n-1}+3=101\)
\(\Rightarrow2\cdot7^{n-1}=101-3\)
\(\Rightarrow2\cdot7^{n-1}=98\)
\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)
\(\Rightarrow7^{n-1}=49\)
\(\Rightarrow7^{n-1}=7^2\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=1+2=3\)
e) \(3\cdot5^{2n+1}-6^2=339\)
\(\Rightarrow3\cdot5^{2n+1}=339+36\)
\(\Rightarrow3\cdot5^{2n+1}=375\)
\(\Rightarrow5^{2n+1}=125\)
\(\Rightarrow5^{2n+1}=5^3\)
\(\Rightarrow2n+1=3\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=\dfrac{2}{2}=1\)
Ta có:
n2 + 2n - 3
= n2 + 3n - n - 3
= n(n + 3) - (n + 3)
= (n - 1)(n + 3)
Nên: n2 + 2n - 3 : n - 1
= (n - 1)(n + 3) : (n - 1)
= n + 3
Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên
ĐK : n nguyên và n khác 1
\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)
Để n^2 + 2n - 3 chia hết cho n - 1
Thì : (n-1)(n+3) chia hết cho n - 1
Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1
Vậy n thuộc Z, n khác 1