Giải giúp em giải bài này với!!! (Cái phần MY WORK em tự làm ạ)
nhạc chill thư giãn khi học...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cơ năng tại vị trí ban đầu:
\(W=\dfrac{1}{2}mv^2=\dfrac{1}{2}\cdot m\cdot8^2=32m\left(J\right)\)
a)Cơ năng tại nơi có độ cao cực đại:
\(W_1=mgh_{max}\left(J\right)\)
Bảo toàn cơ năng: \(W=W_1\)
\(\Rightarrow32m=mgh_{max}\Rightarrow h_{max}=\dfrac{32}{g}=\dfrac{32}{10}=3,2m\)
b)Cơ năng tại nơi \(W_t=W_đ\):
\(W_2=2W_t=2mgz\)
Bảo toàn cơ năng: \(W=W_2\)
\(\Rightarrow32m=2mgz\Rightarrow z=\dfrac{32}{2g}=\dfrac{32}{2\cdot10}=1,6m\)
c)Cơ năng tại nơi \(W_t=\dfrac{1}{4}W_đ\Rightarrow W_đ=4W_t\):
\(W_3=5W_t=5mgz'\)
Bảo toàn cơ năng: \(W=W_3\)
\(\Rightarrow32m=5mgz'\Rightarrow z'=\dfrac{32}{5g}=\dfrac{32}{5\cdot10}=0,64m\)
Người ta có cho hàm f(x) là gì hay tích phân của hàm f(x) bằng bao nhiêu ko ?
Câu 2.
Cơ năng vật ban đầu:
\(W=\dfrac{1}{2}mv^2+mgh=\dfrac{1}{2}\cdot m\cdot6^2+m\cdot10\cdot0=18m\left(J\right)\)
a)Cơ năng tại nơi có độ cao cực đại:
\(W_1=mgh_{max}\)
Bảo toàn cơ năng: \(W=W_1\)
\(\Rightarrow18m=mgh_{max}\Rightarrow h_{max}=\dfrac{18}{10}=1,8m\)
b)Cơ năng tại nơi \(W_t=W_đ\):
\(W_2=W_đ+W_t=2W_t=2mgz\)
Bảo toàn cơ năng: \(W=W_2\)
\(\Rightarrow18m=2mgz\Rightarrow z=\dfrac{18}{2g}=\dfrac{18}{2\cdot10}=0,9m\)
c)Cơ năng tại nơi \(W_đ=2W_t\):
\(W_3=W_đ+W_t=3W_t=3mgz'\)
Bảo toàn cơ năng: \(W=W_3\)
\(\Rightarrow18m=3mgz'\)
\(\Rightarrow z'=\dfrac{18}{3g}=\dfrac{18}{3\cdot10}=0,6m\)
a) \(A=\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)
b) \(B=\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{\left(\sqrt{ab}-1\right)\left(1+\sqrt{ab}\right)}=\dfrac{\left(1+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}-1}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)
c) \(C=\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}=1-\sqrt{x}+x\)
d) \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
e) \(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{2-\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{2-\sqrt{x}}=\sqrt{x}+2+2+\sqrt{x}=2\sqrt{x}+4\)
so hoc sinh trung binh
35:7*3=15(hoc sinh)
so hoc sinh con lai
35-15=20(hoc sinh)
so hoc sinh kha
20:100*60=12(hoc sinh)
so hoc sinh gioi
20-12=8 (hoc sinh)
Đặt A=1/3+2/3^2+...+100/3^100
=>3A=1+2/3+...+100/2^99
=>3A-A=1+(2/3-1/3)+(3/32-2/32)+...(100/299-99/2^99)-100/3100
=>2A=1+1/3+1/3+1/32+...+1/399-100/3100
Ta lại đặt tiếp B=1/3+...+1/399
tiếp tục làm 3B=1+...+1/398
=>3B-B=1+...+1/398-1/3+...+1/399=1-1/3^99
=>B=(1-1/3^99)/2 (đến đây viết mũ là ^ vì lười)
đến đây ta có 2A=1+(1-1/3^99)/2 -100/3^100
=(3^100-100)/3^100 +(1-1/3^99)/2
quy đồng lên nó thành
2A=2x3^100-200/3^100x2 +(3^99-1)/3^99x2
2A=(2x3^100-200+3^100-3)/3^100x2
=(3^101-203)/3^100x2
ta c/m 2a<3/2 là ok
*nhân chéo lên =>2(3^101-203)<3^101x2
đồng nghĩa với 2x3^101 -406<3^101x2 (điều này luôn đúng)
=>bài toán đc chứng minh
1 is bigger than mine
2 the tallest student in my class
3 speaks English better than Mum
4 cook as well as lan
5 the best in the city
6 is better than this one
7 is a more careful writer than she is
8 drives more carefully than Peter
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............
Biến đổi A ta được :
\(A=x\left(x+11\right)\left(x+3\right)\left(x+8\right)+144\)
\(=\left(x^2+11x\right)\left(x^2+11x+24\right)+144\)
\(=\left(x^2+11x\right)^2+24\left(x^2+11x\right)+144\)
\(=\left(x^2+11x\right)^2+2.12.\left(x^2+11x\right)+12^2\)
\(=\left(x^2+11x+12\right)^2\) là một số chính phương \(\forall x\in Z\)
Vậy A là một số chính phương (đpcm)