K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=cos^258^0\cdot sin45+sin^245^0+sin45\)

\(=sin45\left(cos^258^0+sin^245^0\right)\)

\(=\dfrac{\sqrt{2}}{2}\left(cos^258^0+\dfrac{1}{2}\right)\)

\(=\dfrac{\sqrt{2}}{2}\cdot cos^258^0+\dfrac{\sqrt{2}}{4}\)

6 tháng 9 2021

cos (4x + 450) = - sinx

⇔ cos (4x + 450) = cos (x + 900)

⇔ \(\left[{}\begin{matrix}4x+45^0=x+90^0+k.360^0\\4x+45^0=-x-90^0+k.360^0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x=15^0+k.120^0\\x=-27^0+k.72^0\end{matrix}\right.\)

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

a)

\(A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(70\right)+sin^2\left(80\right)\\ A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(40\right)+cos^2\left(40\right)+...+cos^2\left(20\right)+cos^2\left(10\right)\\ A=\left(sin^2\left(10\right)+cos^2\left(10\right)\right)+\left(sin^2\left(20\right)+cos^2\left(20\right)\right)+....+\left(sin^2\left(40\right)+cos\left(40\right)\right)\\ A=1+1+1+1+1=4\)câu b tương tự

14 tháng 11 2017

1+1+1+1+1 thì bằng 5 chứ bn . bỏ 1 số 1 đi :)

a: \(A=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+...+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(B=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+...+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=\dfrac{9}{2}\)

NV
17 tháng 9 2021

\(\Leftrightarrow sin\left(3x+45^0\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=-x+k360^0\\3x+45^0=180^0+x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=45^0+k360^0\\2x=135^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=22,5^0+k90^0\\x=67,5^0+k180^0\end{matrix}\right.\) (\(k\in Z\))

29 tháng 6 2019

\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)

\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)

\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)

\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)

Câu b lm tương tự