K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vì 0<a<1 ;0<b<2 ;0<c<3

=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1

=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)

c/m tương tự với b,c

=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)

và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)

Cộng các vế của bđt với nhau

=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6

Vậy GTLN của A là 6

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-0a1-0b2-0c3tim-gtln-cua-a-dfracsqrt1-aa-dfracsqrt2-bb-dfracsqrt3-ccbai-nay-dung-cauchyminh-suy-nghi.179994478119

 

NV
29 tháng 9 2019

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\frac{\left(x-1\right)^2}{2}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}\left(1-\sqrt{x}\right)\)

Khi \(0< x< 1\Rightarrow0< \sqrt{x}< 1\Rightarrow0< 1-\sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(A=\sqrt{x}-x=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

22 tháng 8 2017

d/ Ta có:

\(A=\left(-x+\sqrt{x}-\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=\dfrac{1}{4}-\left(\sqrt{x}-\dfrac{1}{2}\right)^2\le\dfrac{1}{4}\)

Vậy GTLN là \(A=\dfrac{1}{4}\) đạt được tại \(x=\dfrac{1}{4}\)

22 tháng 8 2017

b/ \(\sqrt{1x}-x\)

c/ Ta có:

x < 1

\(\Rightarrow\sqrt{x}< 1\)

\(\Rightarrow1-\sqrt{x}>0\)

Ta lại có: x > 0

\(\Rightarrow A=\sqrt{x}-x=\sqrt{x}\left(1-\sqrt{x}\right)>0\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Nếu đổi đề như đã nói phía dưới thì ta làm như sau:

Áp dụng BĐT Cauchy:

\(\sqrt{a-1}=\sqrt{1(a-1)}\leq \frac{1+(a-1)}{2}=\frac{a}{2}\)

\(\Rightarrow \frac{\sqrt{a-1}}{a}\leq \frac{a}{2a}=\frac{1}{2}\)

\(\sqrt{b-2}=\frac{\sqrt{2(b-2)}}{\sqrt{2}}\leq \frac{1}{\sqrt{2}}.\frac{2+(b-2)}{2}=\frac{b}{2\sqrt{2}}\)

\(\Rightarrow \frac{\sqrt{b-2}}{b}\leq \frac{b}{2\sqrt{2}b}=\frac{1}{2\sqrt{2}}\)

\(\sqrt{c-3}=\frac{\sqrt{3(c-3)}}{\sqrt{3}}\leq \frac{1}{\sqrt{3}}.\frac{3+(c-3)}{2}=\frac{c}{2\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{c-3}}{c}\leq \frac{c}{2\sqrt{3}c}=\frac{1}{2\sqrt{3}}\)

Cộng theo vế:

\(A\leq \frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\). Đây chính là GTLN của biểu thức.

Dấu bằng xảy ra khi \(\left\{\begin{matrix} 1=a-1\\ 2=b-2\\ 3=c-3\end{matrix}\right.\Leftrightarrow a=2; b=4; c=6\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Nếu bạn đổi \(\sqrt{1-a}\mapsto \sqrt{a-1}; \sqrt{2-b}\mapsto \sqrt{b-2}; \sqrt{3-c}\mapsto \sqrt{c-3}\) thì may ra sẽ có thể tìm max bằng Cauchy

Còn nếu đề bài giữ nguyên như trên, cứ cho \(a\) càng gần 0 thì tử càng to, mẫu càng nhỏ, khi đó giá trị \(\frac{\sqrt{1-a}}{a}\) càng lớn vô cùng. Tương tự với các phân thức còn lại. Khi đó biểu thức không tồn tại GTLN

NV
24 tháng 10 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=\sqrt{x}\left(1-\sqrt{x}\right)\)

\(0< x< 1\Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow A>0\)

\(A< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\Leftrightarrow1-\sqrt{x}< 0\Rightarrow x>1\)

\(A>-2\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)+2>0\Leftrightarrow-x+\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)>0\Leftrightarrow2-\sqrt{x}>0\Rightarrow x< 4\)

Kết hợp ĐKXĐ \(\Rightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)

\(A< -2x\Leftrightarrow\sqrt{x}-x< -2x\Leftrightarrow x+\sqrt{x}< 0\) (vô nghiệm \(\forall x\ge0\))

\(A>2\sqrt{x}\Leftrightarrow\sqrt{x}-x>2\sqrt{x}\Leftrightarrow x+\sqrt{x}< 0\) giống như trên

\(A=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)