chứng minh 2,2^2,2^3,2^4,...,2^20 chia hết cho 3 và 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^17 + 2^18 + 2^19 + 2^20
= 30 + ... + 2^16(2+2^2+2^3+2^4)
= 30 + ... + 2^16. 30
= 30.(1+...+2^16) CHIA HẾT CHO 30
=> A chia hết cho cả 5 và 6
\(A=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ =30+2^4.30+...+2^{16}.30\\ =30.\left(1+2^4+...+2^{16}\right)=6.5.\left(1+2^4+...+2^{16}\right)⋮6;⋮5\left(đpcm\right)\)
Ta có:
2120 - 117 = (...1) - (...1) = (...0)
Vì (...0) chia hết cho 2 và 5 => 2120 - 117 chia hết cho 2 và 5.
C = 5 + 5² + 5³ + ... + 5³⁰
= (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5²⁹.(1 + 5)
= 5.6 + 5³.6 + ... + 5²⁹.6
= 6.(5 + 5³ + ... + 5²⁹) ⋮ 6 (1)
Do C ⋮ 6 ⇒ C ⋮ 2 (2)
Lại có C = (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)
= 30 + 5².(5 + 5²) + ... + 5²⁸.(5 + 5²)
= 30 + 5².30 + ... + 5²⁸.30
= 30.(1 + 5² + ... + 5²⁸)
= 10.3.(1 + 5² + ... + 5²⁸) ⋮ 10 (3)
Từ (1), (2) và (3) suy ra C ⋮ 2; C ⋮ 6; C ⋮ 10
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2 ( ko t/m )
+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3
=> x^2+y^2 chia 3 dư 1 ( ko t/m )
Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3
Tk mk nha
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Sửa đề:
Chứng minh 2 + 2² + 2³ + 2⁴ + ... + 2²⁰ chia hết cho 3 và 5
Đặt A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2¹⁹ + 2²⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2¹⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2¹⁹.3
= 3.(2 + 2³ + ... + 2¹⁹) ⋮ 3
Vậy A ⋮ 3 (1)
A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹.30
= 30.(1 + 2⁴ + ... + 2¹⁹)
= 5.6.(1 + 2⁴ + ... + 2¹⁹) ⋮ 5
Vậy A ⋮ 5 (2)
Từ (1) và (2) ⇒ A chia hết cho 3 và 5
Bạn ghi lại đề đi bạn