Cho hàm số f(x) = \(\left\{{}\begin{matrix}x^2sin\dfrac{1}{x}\left(x\ne0\right)\\0\left(x=0\right)\end{matrix}\right.\)
a, Tính \(g\left(x\right)=\lim\limits_{t\rightarrow0}=\dfrac{f\left(x+t\right)-f\left(x-2t\right)}{2t}\) (x thuộc R)
b, Khảo sát sự tồn tại của g'(x) với x thuộc R