K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

\(P=\left(x-\dfrac{x-1-x}{x-1}\right):\dfrac{1}{x+1}\)

\(=\left(x+\dfrac{1}{x-1}\right)\cdot\left(x+1\right)\)

\(=\dfrac{x^2-x+1}{x-1}\cdot\left(x+1\right)=\dfrac{x^3+1}{x-1}\)

7 tháng 10 2021

a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

 

7 tháng 10 2021

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)

\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)

\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(P_{min}=-1\Leftrightarrow x=0\)

 

\(=\left(\dfrac{1-x}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1+1-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{1-x}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\)

\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(A=\dfrac{1-x}{\sqrt{x}}:\dfrac{\sqrt{x}-1+x+2\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{1-x}{x+3\sqrt{x}}\)

Đặt \(\sqrt{x+1}=a\)

=>\(A=\dfrac{3a+2}{a-2}\cdot\dfrac{1}{a}=\dfrac{3a+2}{a\left(a-2\right)}\)

\(=\dfrac{3\sqrt{x+1}+2}{x+1-2\sqrt{x+1}}\)

29 tháng 12 2022

\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)

\(=\left(1-x\right).2\sqrt{x}\)

\(=2\sqrt{x}-2x\sqrt{x}\)

 

Ta có: \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)}{2\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{8x-8\sqrt{x}+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-2-\sqrt{x}+2}\)

\(=\dfrac{16x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{2\left(16-8\sqrt{x}\right)}{\sqrt{x}+2}\)

\(=\dfrac{32-16\sqrt{x}}{\sqrt{x}+2}\)

8 tháng 7 2023

\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)

\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)

Vậy ......................

\(c.P< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow5-\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}>5\)

\(\Leftrightarrow x>25\left(tm\right)\)

Vậy ...................

a: \(P=\dfrac{x+\sqrt{x}}{x-\sqrt{x}}\cdot\dfrac{3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}-1}\)

b: Để P=1 thì \(\sqrt{x}-1=3\)

hay x=16

15 tháng 5 2022

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{3}\)

\(P=\left(\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{3}\)

\(P=\left(\dfrac{x\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}-1\right)}\right).\dfrac{3}{\sqrt{x}+1}\)

\(P=\dfrac{3}{\sqrt{x}-1}\)

\(P=1\)

\(\Leftrightarrow1=\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow\sqrt{x}-1=3\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\left(tm\right)\)