chia số A thành 3 phần tỉ lệ thuận với 10,6,21 biết 5 lần số thứ 1 với 2 lần số thứ 2 bằng 124.tìm số A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phần đó lần lượt là a, b, c
Có: a/2 = b/3; b/5 = c/7
=> a/10 = b/15 = c/21 và a + b + c = 92
áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a+b+c}{10+15+21}=\frac{92}{46}=2\)
suy ra: a/10 = 2 => a = 20
b/15 = 2 => b = 30
c/21 = 2 => c = 42
Gọi a,b,c là 3 phần đc tách ra từ số 237 . =>a+b+c=237
Theo đề ta có : \(\frac{a}{5}=\frac{b}{3}=>\frac{a}{40}=\frac{b}{24}\)
\(\frac{b}{8}=\frac{c}{5}=>\frac{b}{24}=\frac{c}{15}\)
Do đó \(\frac{a}{40}=\frac{b}{24}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a}{40}=\frac{b}{24}=\frac{c}{15}=\frac{a+b+c}{40+24+15}=\frac{237}{79}=3\)
Từ \(\frac{a}{40}=3=>a=120\)
Từ \(\frac{b}{24}=3=>b=72\)
Từ \(\frac{c}{15}=3=>c=45\)
Vậy số đó đc tách thành 3 phần là 120,72,45
Gọi ba phần phải chia là x,y,z
x và y là tỉ lệ nghịch với \(\frac{1}{5}\)và \(\frac{1}{3}\)tức là tỉ lệ thuận với 5 và 3
y và z là tỉ lệ nghịch với \(\frac{1}{8}\)và 1/5 tức là tỉ lệ thuận với 8 và 5
Ta có : \(\frac{x}{5}=\frac{y}{3},\frac{y}{8}=\frac{z}{5}\) và x + y + z = 237
\(\Leftrightarrow\frac{x}{40}=\frac{y}{24}=\frac{z}{15}=\frac{x+y+z}{40+24+15}=\frac{237}{79}=3\)=> x = 3.40 = 120
y = 3.24 = 72 ; z = 3.15 = 45
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{21}\)
5a+2b=124
=>\(\frac{5a}{50}=\frac{2b}{12}=\frac{5a+2b}{50+12}=\frac{124}{62}=2\)
=> a= 2 x 50 : 5 = 20
b = 2 x 12 : 2 = 12
c= 2 x 21 = 42
vậy số A= 20+12+42=74
đúng hk zọ