\(Cho\)\(x+y+z=1\)\(CMR\)\(x^2+y^2+z^2\ge\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x;y;z ta luôn có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Có (a-b)^2 >=0
<=> a^2 + b^2 >= 2ab (1) ( với mọi a,b)
Tương tự có b^2 + c^2 >= 2bc(2)
c^2 + a^2 >= 2ca(3)
Cộng vế theo vế của (1),(2) và (3) ta có : 2.(a^2+b^2+c^2)>= 2.(ab+bc+ca)
<=> 2.(a^2+b^2+c^2) +a^2+b^2+c^2 >= a^2+b^2+c^2+2.(ab+bc+ca)
<=>3.(a^2+b^2+c^2)>= (a+b+c)^2
<=> a^2+b^2+c^2 >= (a+b+c)^2/3
Áp dụng bđt trên thì x^2+y^2+z^2 >= (x+y+z)^2/3 = 1/3 => ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
x2+y2+z2=1 => x;y;z \(\le1\)(1)
1= (x+y+z)2= x2+y2+z2+ 2(xy+yz+zx) = 1+ 2(xy+yz+zx) => xy+yz+zx=0 => xy= z(-y-x) = z(z-1)
x3+y3 =1 <=> (x+y)(x2+y2 -xy)=1 <=> (1-z)(1-z2-z(z-1))=1 <=> (z-1)(2z2-z-1)= 2z3 -3z2 =0 <=> z=0 hoặc z= \(\frac{3}{2}\)(loại vì lớn hơn 1)
z=0 => x+y=1; xy= 0;
y=y(x+y) = xy+ y2 = y2
=> x+y2 +z3 = x+ y+ 0 = 1 (điều phải chứng minh)
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)
\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
Cộng vế với vế các BĐT trên:
\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)
Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\) ≤\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))
⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)
⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)≥\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)
⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm
Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{3}\)