Chính minh rằng nếu (11a +6b) chia hết cho 9 thì (5a + 3b) chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
Giả sử \(\left(a-6b\right)⋮b\)
Ta có: \(\hept{\begin{cases}\left(2a+b\right)⋮13\left(1\right)\\\left(5a-4b\right)⋮13\Rightarrow\left(10a-8b\right)⋮13\left(2\right)\\\left(a-6b\right)⋮13\left(3\right)\end{cases}}\)
Cộng (1),(2),(3) vế với vế:
\(\left[\left(2a+b\right)+\left(10a-8b\right)+\left(a-6b\right)\right]⋮13\)
\(\Rightarrow\left(2a+b+10a-8b+a-6b\right)⋮13\)
\(\Rightarrow\left[\left(2a+10a+a\right)+\left(b-8b-6b\right)\right]⋮13\)
\(\Rightarrow\left(13a-13b\right)⋮13\)
\(\Rightarrow13\left(a-b\right)⋮13\)(đúng)
=> Giả sử đúng
Vậy...
Ta có:
a) a+3b=(a+b)+2b
Vì a+b chia hết cho 2 và 2b chia hết cho 2 =>a+3b chia hết cho 2
b) 5a+11b=(4a+10b)+(a+b)=2(2a+5b)+(a+b)
Vì 2(2a+5b) chia hết cho 2 và a+b chia hết cho 2 => 5a+11b chia hết cho 2