K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

ta có:2n.2n+52-4.n.n=4nn+25-4nn=(4nn-4nn)+25=25

25 chia hết cho 5=>(2n+5)2-4n2 chia hết cho 5

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$

$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$

$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$

$\Rightarrow 10(n+1)-1\vdots d$

Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$

Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.

Đặt $n+1=a^2; 4n^2-2n-5=b^2$

$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$

$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$

$\Leftrightarrow 4a^4-10a^2+1=b^2$

$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$

$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$

Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$

10 tháng 6 2021

undefined

21 tháng 3 2022

Chỗ đấy phải là (2n)2 =  (2p+ p + 1)2 

\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮a\\2n+5⋮a\end{matrix}\right.\Leftrightarrow a=1\)

Vậy: 2n+5/n+3 là một phân số tối giản

9 tháng 12 2021

gọi d là ước chung của n+3 và 2n+5 với d∈N

⇒n+3⋮d và 2n+5⋮d

⇒(n+3)-(2n+5)⋮d ⇒2(n+3)-(2n+5)⋮d⇔1⋮d⇒d=1∈N

⇒ƯC(n+3 và 2n+5)=1

⇒ƯCLN(n+3 và 2n+5)=1⇒\(\dfrac{2n+5}{n+3}\),(n∈N) là phân số tối giản

19 tháng 9 2018

a,n(2n-3)-2n(n+1)

=2n2-3n-2n2-2n

=-5n⋮5

b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số liên tiếp

nên \(A⋮3!\)

hay A chia hết cho 6

13 tháng 2 2019

a) ( n − 1 ) ( n − 7 ) ( n + 5 ) ( n + 4 )                  b)  x − 2 y y

21 tháng 4 2019

Chọn B.

23 tháng 10 2021

\(\Rightarrow\left(4n^3+2n^2-6n^2-3n+2n+1+3\right)⋮\left(2n+1\right)\\ \Rightarrow\left[\left(2n+1\right)\left(2n^2-3n+1\right)+3\right]⋮\left(2n+1\right)\\ \Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-2;-1;0;1\right\}\)

23 tháng 10 2021

\(4n^3-4n^2-n+4⋮2n+1\)

\(\Leftrightarrow4n^3+2n^2-6n^2-3n+2n+1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)