\(\frac{301-x}{103}+\frac{302-x}{102}=\frac{303-x}{101}+\frac{304-x}{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html
Cộng 1 vào từng phân số ta sẽ đc
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)
\(\Rightarrow x=-100\)
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x-1}{101}+\frac{x-2}{102}+\frac{x-3}{103}\)
<=> \(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1+\frac{x-3}{103}+1\)
<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)
<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)
<=> x + 100 = 0 (vì \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)\ne0\))
<=> x = -100
\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)
\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)
\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)
\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)
Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=0-66=-66\)
Auto làm nốt câu b
a, Cộng cả 2 vế với 2
Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)
\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)
=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)
Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)
=> \(x=-65\)
b , Lm tương tự như Câu a
Chúc bn hok tốt
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Nhận thấy: \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\)
=> \(x-105=0\)
<=> \(x=105\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}-\frac{x-100}{5}-\frac{x-101}{4}-\frac{x-102}{3}=0\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)-\left(\frac{x-100}{5}-1\right)-\left(\frac{x-101}{4}-1\right)-\left(\frac{x-102}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-105=0\left(Vì\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Leftrightarrow x=105\)
a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Rightarrow x=105\)
b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)
\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
\(\Rightarrow x=50\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)
b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x
Theo đề \(\Rightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)-\left(\frac{303-x}{101}+1\right)-\left(\frac{304-x}{100}+1\right)=0\)
Sau khi đã quy đồng các phân số với các số 1, ta có :
\(\frac{301-x+103}{103}+\frac{302-x+102}{102}-\frac{303-x+101}{101}-\frac{304-x+100}{100}=0\)
\(\Rightarrow\frac{404-x}{103}+\frac{404-x}{102}-\frac{404-x}{101}-\frac{404-x}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\frac{1}{103}+\left(404-x\right)\times\frac{1}{102}-\left(404-x\right)\times\frac{1}{101}-\left(404-x\right)\times\frac{1}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{103}< \frac{1}{102}< \frac{1}{101}< \frac{1}{100}\Rightarrow\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\ne0\)
Để \(\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)thì \(404-x=0\)
\(404-x=0\)
\(\Rightarrow x=404\)
Vậy x=404
Phương trình \(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\frac{404-x}{103}+\frac{404-x}{102}=\frac{404-x}{101}+\frac{404-x}{100}\)
\(\Leftrightarrow\left(404-x\right)\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
\(\Leftrightarrow404-x=0\)vì \(\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)\ne0\)
\(\Leftrightarrow x=404\)
Vậy phương trình có nghiệm x=404