K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

a) Ta có: 

\(\frac{n+2}{2n+1}=\frac{1}{2}.\frac{2n+4}{2n+1}=\frac{1}{2}.\frac{2n+1+3}{2n+1}=\)

\(=\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)

\(\frac{n}{2n+3}=\frac{1}{2}.\frac{2n}{2n+3}=\frac{1}{2}.\frac{2n+3-3}{2n+3}\)

=\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)

Ta thấy: \(1+\frac{3}{2n+1}\)>1 và \(1-\frac{3}{2n+3}\)< 1  => \(\frac{1}{2}\left(1+\frac{3}{2n+1}\right)\)\(\frac{1}{2}\left(1-\frac{3}{2n+3}\right)\)

=> \(\frac{n+2}{2n+1}\)\(\frac{n}{2n+3}\)

b) Ta có:

\(\frac{n}{3n+1}=\frac{1}{3}.\frac{3n}{3n+1}=\frac{1}{3}.\frac{3n+1-1}{3n+1}=\)

\(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)

\(\frac{2n}{6n+1}=\frac{1}{3}.\frac{6n}{6n+1}=\frac{1}{3}.\frac{6n+1-1}{6n+1}=\)

=\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)

Ta thấy: \(\frac{1}{6n+1}< \frac{1}{3n+1}\)(Do 6n+1>3n+1)

=>\(\frac{1}{3}.\left(1-\frac{1}{6n+1}\right)\)\(\frac{1}{3}.\left(1-\frac{1}{3n+1}\right)\)Hay \(\frac{2n}{6n+1}>\frac{n}{3n+1}\)

15 tháng 4 2023

chụp cho 

 

8 tháng 5 2017

\(2P=\frac{2n}{2n+1}=\frac{2n+1-1}{2n+1}=1-\frac{1}{2n+1}.\)

\(2Q=\frac{6n+2}{6n+3}=\frac{6n+3-1}{6n+3}=1-\frac{1}{6n+3}.\)

Nhận thấy: \(\frac{1}{2n+1}>\frac{1}{6n+3}\)

=> \(1-\frac{1}{6n+3}>1-\frac{1}{2n+1}\)

<=> 2Q > 2P

Hay Q > P

8 tháng 5 2017

Cách làm:

Lấy cả 2 số nhận với 2 rồi so sánh phần bù tới 1.

Kết quả:P<Q.

tk mk nha các bn.

23 tháng 1 2022

\(\dfrac{n+1}{2n+3}\) < \(\dfrac{n+1}{2n+2}\) < \(\dfrac{n+2}{2n+2}\)

11 tháng 10 2021

Tính các giới hạn sau:

a) lim n^3 +2n^2 -n+1

b) lim n^3 -2n^5 -3n-9

c) lim n^3 -2n/ 3n^2 +n-2

d) lim 3n -2n^4/ 5n^2 -n+12

e) lim (căn 2n^2 +3 - căn n^2 +1)

f) lim căn (4n^2-3n). -2n

24 tháng 7 2021

A=nn+1+n+1n+2>nn+2+n+1n+2A=nn+1+n+1n+2>nn+2+n+1n+2

   =2n+1n+2>2n+12n+3=2n+1n+2>2n+12n+3

VẬY A>B  

Chúc bạn học tốt ( -_- )

20 tháng 2 2016

a,   <                b, >                 c, không biết

em mới hoc lớp 4 thôi

Ta có : \(A=\dfrac{n}{n}+1+\dfrac{n+1}{n+2}\left(n\ne0,n\ne-2\right)\)

\(=1+1+\dfrac{n+1}{n+2}\)

\(=\dfrac{2\left(n+2\right)+n+1}{n+2}\)

\(=\dfrac{2n+4+n+1}{n+2}=\dfrac{3n+5}{n+2}\)

Và \(B=\dfrac{2n+1}{2n+3}\)

Đặt \(n=4\) ta được :

\(A=\dfrac{3.4+5}{4+2}=\dfrac{17}{6}\)

\(B=\dfrac{2.4+1}{2.4+3}=\dfrac{9}{11}\)

Vì \(\dfrac{17}{6}>\dfrac{9}{11}\) nên \(A>B\)

9 tháng 7 2017

a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2

                                = n + 2 / 2n + 5

Mà n + 2 / 2n + 5 < n + 2 / 2n + 1

=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1

Vậy n / 2n + 3 < n + 2 / 2n + 1

b) Ta có : n / 3n + 1 = 2n / 6n + 2

Mà 2n / 6n + 2 < 2n / 6n + 1

Vậy n / 3n + 1 < 2n / 6n + 1