K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

nhân 2A lên, nhân 5B lên rồi tự làm

Lm A ví dụ trước nha :

\(A=1+2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2A=2+2^2+....+2^{101}\)

\(\Rightarrow A=2A-A=2^{101}-1\)

14 tháng 5 2021

nhóm cái đầu với cái cuối

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

a: Ta có: \(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{99}\right)⋮3\)

b: Ta có: \(B=4+4^2+4^3+...+4^{2022}\)

\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)\)

\(=5\cdot\left(4+4^3+...+4^{2021}\right)⋮5\)

21 tháng 8 2021

Dạ em cảm ơn rất nhiều

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

10 tháng 10 2023

a) \(S=1+2+2^2+..+2^{2022}\)

\(2S=2+2^2+2^3+...+2^{2023}\)

\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)

\(S=2^{2023}-1\)

b) \(S=3+3^2+3^3+...+3^{2022}\)

\(3S=3^2+3^3+...+3^{2023}\)

\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)

\(2S=3^{2023}-3\)

\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)

c) \(S=4+4^2+4^3+...+4^{2022}\)

\(4S=4^2+4^3+...+4^{2023}\)

\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)

\(3S=4^{2023}-4\)

\(S=\dfrac{4^{2023}-4}{3}\)

d) \(S=5+5^2+...+5^{2022}\)

\(5S=5^2+5^3+...+5^{2023}\)

\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)

\(4S=5^{2023}-5\)

\(S=\dfrac{5^{2023}-5}{4}\)

10 tháng 10 2023

thanks

 

a: \(2^3-5^3:5^2+12\cdot2^2\)

\(=8-5+48\)

\(=51\)

b: \(5\cdot\left[\left(85-35:7\right):8+90\right]-5\)

\(=5\cdot\left[10+90\right]-5\)

=495

30 tháng 12 2024

a: 23−53:52+12⋅222353:52+1222

=8−5+48=85+48

=51=51

b: 5⋅[(85−35:7):8+90]−55[(8535:7):8+90]5

=5⋅[10+90]−5=5[10+90]5

=495

8 tháng 9 2023

Ta có A = 5 + 52 + 53 + ... + 52021

5A = 52 + 53 + 54 + ... + 52022

5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )

4A = 52022 - 5

A = \(\dfrac{5^{2022}-5}{4}\)

8 tháng 9 2023

Tìm chữ số tận cùng của kết quả mỗi phép tính sau:

a. 4915

b. 5410

c. 1120+11921+200022

 

22 tháng 12 2023

a) \(3.5^2+15.2^2-26\div2\)

= 3.25 + 15.4 - 13

= 75 + 60 - 13

= 135 - 13

= 122

b) \(5^3.2-100\div4+2^3.5\)

= 125.2 - 25 + 8.5

= 250 - 25 + 40

= 225 + 40

= 265

c)\(6^2\div9+50.2-3^3.33\)

= 36 : 9 + 100 - 9.33

= 4 + 100 - 297

= 104 - 297

= -193

d)\(3^2.5+2^3.10-81\div3\)

= 9.5 + 8.10 - 27

= 45 + 80 - 27

= 125 - 27

= 98

e) \(5^{13}\div5^{10}-25.2^2\)

= 53 - 25.4

= 125 - 100

= 25

f) \(20\div2^2+5^9\div5^8\)

= 20 : 4 + 5

= 5 + 5

= 10

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$