Ai giúp mk với
(x+3) + y(x+2) = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(120+2\left(3x-17\right)=214\)
\(120+6x-34=214\)
\(86+6x=214\)
\(6x=214-86\)
\(6x=128\)
\(x=128:6\)
\(x=\frac{64}{6}\)
\(x+6y⋮17\Rightarrow12x+72y⋮17\)
Ta có
\(\left(12x+72y\right)+\left(5x+47y\right)=17x+7.17y⋮17\)
\(\Rightarrow5x+47y⋮17\)
\(a,\frac{7}{x}=\frac{x}{28}=>x\cdot x=28\cdot7=>x^2=196=>x^2=14^2\)\(=>x=14\)
\(b,\frac{10+x}{x+17}=\frac{3}{4}=>\left(10+x\right)\cdot4=\left(x+17\right)\cdot3=>40+x4=x3+51\)\(=>x4-x3=51-40=>x=11\)
Ta có: \(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2\left(x+2\right)}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2x+4}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+4-\left(y-1\right)+z+5}{6-4+7}=\frac{2x+4-y+1+z+5}{6-4+7}=\frac{\left(2x-y+z\right)+\left(4+1+5\right)}{6-4+7}\)
\(=\frac{17+10}{9}=\frac{27}{9}=3\)
Suy ra: \(2x+4=6.3\Rightarrow2x=14\Rightarrow x=7\)
\(y-1=3.4\Rightarrow y=13\)
\(z+5=3.7\Rightarrow z=16\)
Vậy x = 7 ; y = 13; z = 16
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow x^2-x^2+6x-4x=17-4-9\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)
các bn lm đến đâu cx dc miễn là lm hộ mk cái ạ, ai đang lm vào nhắn tin vs mk để mk bít nha
a; \(-\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{71}{15}< x< -\dfrac{13}{7}+\dfrac{19}{14}-\dfrac{7}{2}\)
-\(\dfrac{19}{15}\) - \(\dfrac{71}{15}\) < \(x\) < -\(\dfrac{1}{2}\) - \(\dfrac{7}{2}\)
-6 < \(x\) < -4
vì \(x\) \(\in\) Z nên \(x\) = -5
Bạn lưu ý khi đăng câu hỏi thì đăng đầy đủ đề, kèm theo điều kiện của $x,y$.
Trong bài này mình giả sử $x,y$ là các số nguyên.
Tìm $x,y$ thỏa mãn: $(x+3)+y(x+2)=17$
--------------------------
Lời giải:
$(x+3)+y(x+2)=17$
$(x+2)+y(x+2)=16$
$(x+2)(y+1)=16$
Vì $x+2, y+1$ là các số nguyên với mọi $x,y$ nguyên nên ta có bảng sau: