K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

\(A=7+7^2+7^3+...+7^8\\=(7+7^2)+(7^3+7^4)+...+(7^7+7^8)\\=7\cdot(1+7)+7^3\cdot(1+7)+...+7^7\cdot(1+7)\\=7\cdot8+7^3\cdot8+...+7^7\cdot8\\=8\cdot(7+7^3+...+7^7)\)

Vì \(8\cdot(7+7^3+...+7^7)\vdots8\)

nên \(A\vdots8\)

27 tháng 10 2023

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^7+7^8\right)\)

\(A=56+7^2.\left(7+7^2\right)+...+7^6.\left(7+7^2\right)\)

\(A=56+7^2.56+...+7^6.56\)

\(A=56.\left(1+7^2+...+7^6\right)\)

Vì \(56⋮8\) nên \(56.\left(1+7^2+...+7^6\right)⋮8\)

Vậy \(A⋮8\)

\(#WendyDang\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$A=(7+7^2)+(7^3+7^4)+....+(7^7+7^8)$

$=7(1+7)+7^3(1+7)+....+7^7(1+7)$

$=(1+7)(7+7^3+....+7^7)=8(7+7^3+....+7^7)\vdots 8$

Ta có đpcm.

Ta có

a= 7(1+7)+7^3(1+7)+...+7^77(1+7) 

= 7.8 +7^3.8+...+7^77.8 

=8(7+7^3+...+7^77) chia hết cho 8 

=> a chia hết cho 8

20 tháng 11 2017

a = 7 + 7^2 + 7^2 + 7^3 + 7^4 + ... + 7^78

a = ( 7 + 7^2 ) + ( 7^3 + 7^4 ) + ... + ( 7^77 + 7^78 )

a = 7( 1 + 7 ) + 7^3( 1 + 7 ) + ... + 7^77( 1 + 7 )

a = 7 . 8 + 7^3 . 8 + ... + 7^77 . 8

a = 8( 7 + 7^3 + ... + 7^77 )

=> a chia hết cho 8

8 tháng 11 2019

phải là :

A= \(7+7^2+7^3+...+7^{99}+7^{100}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)

\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{99}.\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{99}.8\\ =8.\left(7+7^3+7^{99}\right)\\ \Rightarrow A⋮8\)

Vậy \(A⋮8\)

8 tháng 11 2019

Thanks bạn nha, mk ghi lộn đề

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

23 tháng 11 2016

Có \(A=7^1+7^2+7^3+...+7^{99}+7^{100}=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...\left(7^{99}+7^{100}\right)\)

\(\Leftrightarrow A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{99}\left(1+7\right)=7.8+7^3.8+...+7^{99}.8=8\left(7+7^3+...+7^{99}\right)\)

Vì \(8\left(7+7^3+...+7^{99}\right)\)chia hết cho 8 nên \(A\)chia hết cho 8 (ĐPCM)

  __cho_mình_nha_chúc_bạn_học _giỏi__ 

10 tháng 1 2016

Ai biết thì giải bài này hộ mình với

 

22 tháng 12 2017

A = 73 + 74 + 75 + 76 + ... + 797 + 798

A = ( 73 + 74 ) + ( 75 + 76 ) + .... + ( 797 + 798 )

A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )

A = 73 . 8 + 75 . 8 + .... + 797 . 8

A= 8 . ( 73 + 75 + ..... + 797 \(⋮8\)

Vậy A \(⋮8\)( dpcm )

12 tháng 11 2016

Ta có :

\(A=7^3+7^4+....+7^{98}\)

\(\Rightarrow A=7^3\left(1+7\right)+......+7^{97}\left(1+7\right)\)

\(\Rightarrow A=7^3.8+......+7^{97}.8\)

=> A chia hết cho 8