K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 5 2021

Ta có: \(\sqrt{x^2-2x}=\sqrt{x^2-2x}.1\le\frac{x^2-2x+1}{2}\)

\(\Rightarrow\frac{x-1}{\sqrt{x^2-2x}}\ge\frac{2\left(x-1\right)}{\left(x-1\right)^2}=\frac{2}{x-1}\)

\(A=x+\frac{x-1}{\sqrt{x^2-2x}}\ge x-1+\frac{2}{x-1}+1\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}+1=1+2\sqrt{2}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x^2-2x=1\\x-1=\frac{2}{x-1}\\x>2\end{cases}}\Leftrightarrow x=1+\sqrt{2}\).

23 tháng 8 2017

với đk 0 ≤ x # 1, biểu thức đã cho xác định 

P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1) 

P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)} 

P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1) 

P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1) 

P = √x / (x+√x+1) 
- - - 
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp: 

P = 1/ (√x + 1 + 1/√x) 

bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "=" 

vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm) 

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

12 tháng 7 2019

BonkingVũ Huy Hoàng

11 tháng 6 2021

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

1 tháng 5 2018

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

20 tháng 5 2020

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m