K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) M = \(5+5^2+5^3+...+5^{80}\)

\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)

\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)

\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)

=> M chi hết cho 6 => điều phải chứng minh

24 tháng 1 2021

) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)

M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)

M= 5.6 + 5^3.6 + … + 5^79.6

M = 6(5+5^3+…+5^79) chia hết cho 6

b)  Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5

Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)

=> M = 5 + 52 + 53 + ... + 580  không chia hết cho 52 (do 5 không chia hết cho 52)

=> M chia hết cho 5 nhưng không chia hết cho 52

=> M không phải số chính phương

25 tháng 12 2022

M=(5+5^2)+...+(5^79+5^80)

M=30.1+...+5^78+(5^1+5^2)

M=30(1+...+5^78) /30

VẬY M / 30

 

25 tháng 12 2022

\(M=5+5^2+5^3+....+5^{80}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)

\(=30+5^3.\left(5+5^2\right)+...+5^{70}.\left(5+5^2\right)\)

\(=1.30+5^3.30+...+5^{70}.30\)

\(=\left(1+5^3+...+5^{70}\right).30\)

\(=>M⋮30\)

M=(5+5^2)+5^2(5+5^2)+...+5^78(5+5^2)

=30(1+5^2+...+5^78) chia hết cho 30

21 tháng 8 2023

bài 1 có ý d nha các bạn mình viết thiếu

21 tháng 8 2023

Bài dái quá, bạn nên tách ra đi nhé!

30 tháng 11 2023

5 <  5 + 52 + 53 +....+52020 + 52021 

Chứ em

30 tháng 11 2023

5= 5+52+53+...+52020+52021.

ủa bn có nhầm j ko?

12 tháng 12 2023

\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)

=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)

=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)

=>\(4S=5^{2022}-5\)

=>\(4S+5=5^{2022}\)

12 tháng 12 2023

5.S hay 4.S vậy bạn?

 

27 tháng 10 2023

\(M=1+5+5^2+...+5^{2023}\)

\(M=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\)

\(M=6+5\cdot\left(1+5\right)+5^2\cdot\left(1+5\right)+...+5^{2022}\cdot\left(1+5\right)\)

\(M=6+5\cdot6+5^2\cdot6+....+5^{2022}\cdot6\)

\(M=6\cdot\left(1+5+5^2+...+5^{2022}\right)\) ⋮ 6

Vậy: M ⋮ 6 

27 tháng 10 2023

Huỳnh Thanh Phong

E hơi thắc mắc phần

\(6+5.\left(1+5\right)\)

ạ.

 

18 tháng 9 2023

\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)

nên \(C⋮5\)

\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)

\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)

\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)

nên \(C⋮6\)

\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)

\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)

\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)

\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)

Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)

nên \(C⋮13\)

#\(Toru\)

18 tháng 9 2023
a, ta có
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 + ... + 5^19 )
=> C chia hết cho 5
b,
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 ) + 5^3 . ( 1 + 5 ) + ... + 5^19 . ( 1 + 5 )
=> C = 5 . 6 + 5^3 . 6 + ... + 5^19 . 6
=> C = 6 . ( 5 + 5^3 + ... + 5^19 )
=> C chia hết cho 6
c,
C = 5 + 5^2 + 5^3 + ... + 5^20
=> C = (5 + 5^2 + 5^3 + 5^4 ) + ... + (5^17 + 5^18 + 5^19 + 5^20 )
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 ) + ... + 5^17 . ( 1+ 5 + 5^2 +5^3)
=> C = 5 . 156 + 5^5 . 156 + ...+ 5^17 . 156
=> C = 5 . 12 . 13 + 5^5 . 12 . 13 + ... + 5^17 . 12 . 13
=> C = 13 . ( 5 . 12 + 5^5 . 12 + ... + 5^17 . 12 )
=> C chia hết cho 13bucminh
AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

Ta có : 
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) ) 
=> 4A =  \(5^{2024}\)- 1
Nhận thấy : 
                  \(5^{2024}\) - 1 > ​​\(5^{2024}\)
=> 4A <  \(5^{2024}\) 
                            V
ậy 4A <  \(5^{2024}\) ​

Thấy hay tick hộ mk vs ạ