Bài 1 . Đưa thừa số ra ngoài dấu căn a, 3√x² b, -5√y⁴ c, 3√5x d, x√7 với x lớn hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^3-6x^2+12x-8}\)
\(=\sqrt{\left(x-2\right)^3}\)
\(=\left|x-2\right|\cdot\sqrt{x-2}\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
a: \(\sqrt{48a^4b^2}=\sqrt{16a^4b^2\cdot3}=4\sqrt{3}\cdot a^2\cdot\left|b\right|\)
\(=-4\sqrt{3}\cdot a^2b\)
b: \(\sqrt{-25x^3}=\sqrt{-25x^2\cdot x}=\left|25x^2\right|\cdot\sqrt{-x}\)
\(=-5x\sqrt{-x}\)
a: \(\sqrt{36\cdot3\cdot\left(a+7\right)^2}=6\sqrt{3}\left|a+7\right|\)
b: \(\sqrt{9^2\cdot a^4\cdot b^3\cdot b^3\cdot b}=9a^2b^3\sqrt{b}\)
c: Nếu đk xác định như này thì \(C=\sqrt{16a^5b^3}\) chỉ xác định với a=b=0 thôi nha bạn
=>C=0
a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)
b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)
\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)
\(\sqrt{\left(-9\right)\cdot\left(-36\right)\cdot ab^2}\)
\(=\sqrt{9\cdot36\cdot ab^2}\)
\(=3\cdot4\cdot\left|b\right|\cdot\sqrt{a}\)
\(=12\left|b\right|\cdot\sqrt{a}\)
Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le4\)
Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)
Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)
\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)
Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)
Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)
\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
a) \(\sqrt{128\left(x-y\right)^2}\)
\(=\sqrt{8^2\cdot2\left(x-y\right)^2}\)
\(=\left|8\left(x-y\right)\right|\sqrt{2}\)
\(=8\left|\left(x-y\right)\right|\sqrt{2}\)
b) \(\sqrt{150\left(4x^2-4x+1\right)}\)
\(=\sqrt{5^2\cdot6\left(2x-1\right)^2}\)
\(=\left|5\left(2x-1\right)\right|\sqrt{6}\)
\(=5\left|2x-1\right|\sqrt{6}\)
c) \(\sqrt{x^3-6x^2+12x-8}\)
\(=\sqrt{\left(x-2\right)^3}\)
\(=\sqrt{\left(x-2\right)^2\left(x-2\right)}\)
\(=\left|x-2\right|\sqrt{x-2}\)
a: \(=\sqrt{64\cdot2\cdot\left(x-y\right)^2}=8\sqrt{2}\cdot\left|x-y\right|\)
b; \(=\sqrt{25\cdot6\left(2x-1\right)^2}=5\sqrt{6}\cdot\left|2x-1\right|\)
c: \(=\sqrt{\left(x-2\right)^3}=\left|x-2\right|\cdot\sqrt{x-2}\)
Sửa đề: Đưa thừa số vào trong dấu căn
a: \(3\sqrt{x^2}=\sqrt{3^2\cdot x^2}=\sqrt{9x^2}\)
b: \(-5\sqrt{y^4}=-\sqrt{5^2\cdot y^4}=-\sqrt{25y^4}\)
c: \(3\sqrt{5x}=\sqrt{3^2\cdot5x}=\sqrt{45x}\)
d: \(x\sqrt{7}=\sqrt{x^2\cdot7}=\sqrt{7x^2}\)