K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

$4(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)$

$=\dfrac12\cdot(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)$

$=\dfrac12\cdot(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)$

$=\dfrac12\cdot(3^8-1)(3^8+1)(3^{16}+1)$

$=\dfrac12\cdot(3^{16}-1)(3^{16}+1)$

$=\dfrac{3^{32}-1}{2}$

10 tháng 10 2020

TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\

AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO

10 tháng 10 2020

a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

13 tháng 9 2015

c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)


=50+49+48+............+1


=(50+1)50=2550:2=1275


d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)


=(2^8-1)(2^8+1)(2^16+1)


=(2^16-1)(2^16+1)


=2^32-1



e;=(3-1)(3+1)(3^2+1)...........(3^16+1)


=(3^2-1)(3^2+1)..............(3^16+1)


=(3^16-1)(3^16+1)=3^32-1


tu tinh ket qua luy thua tao khong thua hoi dau



20 tháng 4 2016

b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)

                 \(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)

                 \(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)

                 \(=1+1,5+2+...+8,5\)

                 \(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)

19 tháng 4 2016

B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)                                                                               

 B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)

Vậy 1/8<2 hay 1/8<16/8

\(=\dfrac{8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)}{2}-\dfrac{3^{16}}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)-3^{16}}{2}\)

=-1/2

15 tháng 9 2019

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=3^{32}-1\)

\(\Leftrightarrow A=3^{31}-\frac{1}{2}\)

7 tháng 5 2015

A=1+1/2x3+1/3X6+1/4X10+...+1/16X136

A=1+3/2+2+5/2+3+...+17/2

A=2/2+3/2+4/2+5/2+6/2+...+17/2

A=2+3+4+5+...+16+17/2

A=(2+17)x16:2/2

A=19x16:2/2

A=304:2/2

A=152/2

A=76

****

11 tháng 11 2020

what your name? I can't speak vietnamese